高级检索
当前位置: 首页 > 详情页

Prediction of the Fundus Tessellation Severity With Machine Learning Methods

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 预警期刊

机构: [1]Capital Med Univ, Beijing Tongren Hosp,Beijing Ophthalmol & Visual, Beijing Tongren Eye Ctr,Med Artificial Intelligen, Beijing Key Lab Intraocular Tumor Diag & Treatmen, Beijing, Peoples R China [2]Univ Int Business & Econ, Sch Stat, Beijing, Peoples R China [3]Univ Int Business & Econ, Sch Banking & Finance, Beijing, Peoples R China [4]EVision Technol Beijing Co LTD, Beijing, Peoples R China
出处:
ISSN:

关键词: fundus tessellation fundus tessellated density fundus tessellation severity machine learning the Beijing eye study

摘要:
PurposeTo predict the fundus tessellation (FT) severity with machine learning methods. MethodsA population-based cross-sectional study with 3,468 individuals (mean age of 64.6 +/- 9.8 years) based on Beijing Eye Study 2011. Participants underwent detailed ophthalmic examinations including fundus images. Five machine learning methods including ordinal logistic regression, ordinal probit regression, ordinal log-gamma regression, ordinal forest and neural network were used. Main Outcome MeasureFT precision, recall, F1-score, weighted-average F1-score and AUC value. ResultsObserved from the in-sample fitting performance, the optimal model was ordinal forest, which had correct classification rate (precision) of 81.28%, while 34.75, 93.73, 70.03, and 24.82% in each classified group by FT severity. The AUC value was 0.7249. And the F1-score was 65.05%, weighted-average F1-score was 79.64% on the whole dataset. For out-of-sample prediction performance, the optimal model was ordinal logistic regression, which had precision of 77.12% on the validation dataset, while 19.57, 92.68, 64.74, and 6.76% in each classified group by FT severity. The AUC value was 0.7187. The classification accuracy of light FT group was the highest, while that of severe FT group was the lowest. And the F1-score was 54.46%, weighted-average F1-score was 74.19% on the whole dataset. ConclusionsThe ordinal forest and ordinal logistic regression model had the strong prediction in-sample and out-sample performance, respectively. The threshold ranges of the ordinal forest model for no FT and light, moderate, severe FT were [0, 0.3078], [0.3078, 0.3347], [0.3347, 0.4048], [0.4048, 1], respectively. Likewise, the threshold ranges of ordinal logistic regression model were <= 3.7389, [3.7389, 10.5053], [10.5053, 13.9323], > 13.9323. These results can be applied to guide clinical fundus disease screening and FT severity assessment.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 2 区 医学:内科
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 医学:内科
JCR分区:
出版当年[2020]版:
Q1 MEDICINE, GENERAL & INTERNAL
最新[2023]版:
Q1 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tongren Hosp,Beijing Ophthalmol & Visual, Beijing Tongren Eye Ctr,Med Artificial Intelligen, Beijing Key Lab Intraocular Tumor Diag & Treatmen, Beijing, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21193 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)