高级检索
当前位置: 首页 > 详情页

Automatic multi-plaque tracking and segmentation in ultrasonic videos

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]School of Information Science and Technology, Fudan University, Shanghai, China [2]Department of Ultrasound, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
出处:
ISSN:

关键词: Carotid plaque Ultrasound videos Tracking by detection Multi-object tracking Deep learning

摘要:
Carotid plaque tracking and segmentation in ultrasound videos is the premise for subsequent plaque property evaluation and treatment plan development. However, the task is quite challenging, as it needs to address the problems of poor image quality, plaque shape variations among frames, the existence of multiple plaques, etc. To overcome these challenges, we propose a new automatic multi-plaque tracking and segmentation (AMPTS) framework. AMPTS consists of three modules. The first module is a multi object detector, in which a Dual Attention U-Net is proposed to detect multiple plaques and vessels simultaneously. The second module is a set of single-object trackers that can utilize the previous tracking results efficiently and achieve stable tracking of the current target by using channel attention and a ranking strategy. To make the first module and the second module work together, a parallel tracking module based on a simplified 'tracking-by-detection' mechanism is proposed to solve the challenge of tracking object variation. Extensive experiments are conducted to compare the proposed method with several state-of-the-art deep learning based methods. The experimental results demonstrate that the proposed method has high accuracy and generalizability with a Dice similarity coefficient of 0.83 which is 0.16, 0.06 and 0.27 greater than MAST (Lai et al., 2020), Track R-CNN (Voigtlaender et al., 2019) and VSD (Yang et al., 2019) respectively and has made significant improvements on seven other indicators. In the additional Testing set 2, our method achieved a Dice similarity coefficient of 0.80, an accuracy of 0.79, a precision of 0.91, a Recall 0.70, a F1 score of 0.79, an AP@0.5 of 0.92, an AP@0.7 of 0.74, and an expected average overlap of 0.79. Numerous ablation studies suggest the effectiveness of each proposed component and the great potential for multiple carotid plaques tracking and segmentation in clinical practice. (c) 2021 Elsevier B.V. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 医学
小类 | 1 区 计算机:人工智能 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 核医学
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 计算机:人工智能 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 核医学
JCR分区:
出版当年[2019]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, BIOMEDICAL Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]School of Information Science and Technology, Fudan University, Shanghai, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)