高级检索
当前位置: 首页 > 详情页

Local-Global Dual Perception Based Deep Multiple Instance Learning for Retinal Disease Classification

文献详情

资源类型:
WOS体系:

收录情况: ◇ CPCI(ISTP) ◇ EI

机构: [1]Tencent Jarvis Lab, Shenzhen, Peoples R China [2]Capital Med Univ, Beijing Tongren Hosp, Beijing, Peoples R China
出处:
ISSN:

关键词: Retina disease classification Multiple instance learning Deep learning Interpretability

摘要:
With the rapidly growing number of people affected by various retinal diseases, there is a strong clinical interest for fully automatic and accurate retinal disease recognition. The unique characteristics of how retinal diseases are manifested on the fundus images pose a major challenge for automatic recognition. In order to tackle the challenges, we propose a local-global dual perception (LGDP) based deep multiple instance learning (MIL) framework that integrates the instance contribution from both local scale and global scale. The major components of the proposed framework include a local pyramid perception module (LPPM) that emphasizes the key instances from the local scale, and a global perception module (GPM) that provides a spatial weight distribution from a global scale. Extensive experiments on three major retinal disease benchmarks demonstrate that the proposed framework outperforms many state-of-the-art deep MIL methods, especially for recognizing the pathological images. Last but not least, the proposed deep MIL framework can be conveniently embedded into any convolutional backbones via a plug-and-play manner and effectively boost the performance.

基金:
语种:
被引次数:
WOS:
第一作者:
第一作者机构: [1]Tencent Jarvis Lab, Shenzhen, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)