高级检索
当前位置: 首页 > 详情页

Gasdermin D in peripheral nerves: the pyroptotic microenvironment inhibits nerve regeneration.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China. [2]Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China. [3]Department of Disease prevention and control, Xijing 986 Hospital, The Fourth Military Medical University, Shanxi 710000, China. [4]Department of Anesthesiology (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei 230080, China. [5]Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China. [6]The Center for Scientific Research of the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China. [7]Department of Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
出处:

摘要:
Wallerian degeneration (WD) involves the recruitment of macrophages for debris clearance and nerve regeneration, and the cause of the foamy macrophages that are frequently observed in peripheral transection injuries is unknown. Recent studies indicated that these foamy cells are generated by gasdermin D (GSDMD) via membrane perforation. However, whether these foamy cells are pyroptotic macrophages and whether their cell death elicits immunogenicity in peripheral nerve regeneration (PNR) remain unknown. Therefore, we used GSDMD-deficient mice and mice with deficiencies in other canonical inflammasomes to establish a C57BL/6 J mouse model of sciatic nerve transection and microanastomosis (SNTM) and evaluate the role of GSDMD-executed pyroptosis in PNR. In our study, the GSDMD-/- mice with SNTM showed a significantly diminished number of foamy cells, better axon regeneration, and a favorable functional recovery, whereas irregular axons or gaps in the fibers were found in the wild-type (WT) mice with SNTM. Furthermore, GSDMD activation in the SNTM model was dependent on the NLRP3 inflammasome and caspase-1 activation, and GSDMD-executed pyroptosis resulted in a proinflammatory environment that polarized monocytes/macrophages toward the M1 (detrimental) but not the M2 (beneficial) phenotype. In contrast, depletion of GSDMD reversed the proinflammatory microenvironment and facilitated M2 polarization. Our results suggested that inhibition of GSDMD may be a potential treatment option to promote PNR.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 医学
小类 | 3 区 细胞生物学
最新[2023]版:
大类 | 2 区 生物学
小类 | 2 区 细胞生物学
JCR分区:
出版当年[2019]版:
Q2 CELL BIOLOGY
最新[2023]版:
Q1 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)