高级检索
当前位置: 首页 > 详情页

PAP Polypeptide Promotes Osteogenesis in Jaw Bone Defect Repair by Inhibiting Inflammatory Reactions

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Shanghai Jiao Tong Univ Sch Med, Tongren Hosp, Dept Stomatol, Shanghai, Peoples R China [2]Shandong Univ, Sch & Hosp Stomatol, Cheeloo Coll Med, Dept Oral & Maxillofacial Surg,Shandong Key Lab Or, Jinan, Peoples R China [3]Shanghai Jiao Tong Univ Sch Med, Shanghai Peoples Hosp 9, Nursing Dept, Shanghai, Peoples R China [4]Shanghai Jiao Tong Univ Sch Med, Shanghai Peoples Hosp 9, Dept Oral Surg, Shanghai, Peoples R China [5]Shandong Univ, Sch & Hosp Stomatol, Cheeloo Coll Med, Dept Oral & Maxillofacial Surg,Shandong Engn Lab D, Jinan, Peoples R China
出处:
ISSN:

关键词: polypeptide anti-inflammatory macrophage polarization BMSC Jaw defect

摘要:
Jaw defects are common in oral and maxillofacial diseases and require surgical repair in extreme cases. Given the limitations in availability and efficacy of autologous bone grafts or allografts, great effort has been made in finding suitable, biocompatible, and effective artificial bone materials. Considering the key role of inflammation in bone resorption, we sought to identify a polypeptide with anti-inflammatory and bone-promoting effects. Rat bone marrow-derived mesenchymal cells (BMSCs) were treated with lipopolysaccharide (LPS) to induce an inflammatory environment, and 1,538 differentially abundant polypeptides were identified using mass spectrometry. Based on mass spectrometry signal intensity, multiple of difference, and structural stability, PAP was screened out as the polypeptide with the lowest abundance in the inflammatory condition. PAP showed no cytotoxicity to BMSCs with increasing concentrations. PAP (10 mu M) also increased alkaline phosphatase activity and mRNA expression of Ocn, Bmp2, and Runx2 in a concentration-dependent manner, which confirmed that it can promote osteogenic induction of rat BMSCs. Moreover, PAP reduced LPS-induced expression of inflammatory cytokines (TNF-alpha, IL-1 beta, IL-6) and reactive oxygen species and inhibited polarization of RAW 264.7 macrophages to the inflammatory type. Finally, a skull defect mouse model was established, and mice were injected with LPS and/or PAP. Micro-CT, histological analysis, and immunohistochemical staining showed that PAP significantly reduced the number of LPS-induced bone resorption pits and maintained bone integrity. Overall, the polypeptide PAP screened using LPS stimulation of BMSCs is not cytotoxic and can inhibit the inflammatory reaction process to promote osteogenesis. This study thus provides a basis for development of PAP as a new osteogenic material in the repair of jaw defects.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 工程技术
小类 | 2 区 综合性期刊
最新[2023]版:
大类 | 3 区 工程技术
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2020]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Shanghai Jiao Tong Univ Sch Med, Tongren Hosp, Dept Stomatol, Shanghai, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)