高级检索
当前位置: 首页 > 详情页

Deep Learning for Automatic Detection of Recurrent Retinal Detachment after Surgery Using Ultra-Widefield Fundus Images: A Single-Center Study

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Tongren Hosp,Beijing Tongren Eye Ctr,Beij, Minist Ind & Informat Technol,Beijing Ophthalmol, Med Artificial Intelligence Res & Verificat Key L, Beijing, Peoples R China [2]InferVis Healthcare Sci & Technol Ltd Co, Shanghai 200032, Peoples R China [3]Capital Med Univ, Dept Ophthalmol, Beijing Liangxiang Hosp, Beijing, Peoples R China
出处:

关键词: deep learning recurrent retinal detachment ultra-widefield image

摘要:
It is important to detect recurrent retinal detachment (RD) among patients after retinal reattachment surgery. The application of deep learning (DL) methods to detect recurrent RD with ultra-widefield (UWF) fundus images is promising, but the feasibility and efficiency have not been studied. A DL system with ResNet-50 and Inception-ResNet-V2 is developed and internally validated to identify recurrent RD and retina reattachment after surgery. The performance is further validated and compared with human ophthalmologists in a prospective dataset assessed by area under curve (AUC), accuracy, sensitivity, and specificity. Five hundred fifty-four UWF fundus images from 173 RD patients (mean [standard deviation] age: 39.2 +/- 16.2 years; male: 115 [66.5%]) are used to develop the DL system. DL shows AUCs of 0.912 (95% confidence interval [CI]: 0.855-0.968) and 0.906 (95% CI: 0.818-0.995) for the two models. Eighty-nine UWF fundus images from 23 RD patients (mean [standard deviation] age: 31.4 +/- 12.3 years; male: 15 [65.2%]) are collected as prospective dataset. DL also shows the ability to detect recurrent RD with the AUCs of 0.929 and 0.930 for the two models, respectively. DL reaches a similar and even better diagnostic performance than junior ophthalmologists and performs much better than medical students.

基金:

基金编号: 2020-1-2052 Z201100005520045 Z181100001818003

语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
最新[2023]版:
大类 | 3 区 计算机科学
小类 | 3 区 自动化与控制系统 3 区 计算机:人工智能 3 区 机器人学
JCR分区:
出版当年[2020]版:
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 AUTOMATION & CONTROL SYSTEMS Q1 ROBOTICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tongren Hosp,Beijing Tongren Eye Ctr,Beij, Minist Ind & Informat Technol,Beijing Ophthalmol, Med Artificial Intelligence Res & Verificat Key L, Beijing, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21166 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)