高级检索
当前位置: 首页 > 详情页

A GROUP OF NOVEL INDEXES OF OPTICAL COHERENCE TOMOGRAPHY FOR COMPUTER-AIDED DIAGNOSIS OF GLAUCOMA

| 认领 | 导出 |

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China [2]Capital Med Univ,Beijing Tongren Hosp,Dept Ophthalmol,Beijing 100730,Peoples R China [3]Capital Med Univ, Bei Childrens Hosp, Dept Ophthalmol, Natl Key Discipline Pediat,Minist Educ, Beijing 100045, Peoples R China
出处:
ISSN:

关键词: Key words and phrases Machine learning glaucoma diagnosis optical coherence tomography functional data analysis support vector machines

摘要:
Purpose: We design three new indexes of retinal nerve fiber layer thickness (RNFLT) by functional data analysis (FDA) methods and evaluate the diagnostic performance of support vector machines (SVM) based on these three new indexes and average RNFLT. Method: A total of 217 healthy eyes (122 subjects) and 88 glaucoma eyes (49 patients) were included. Three new indexes (minimum of RNFLT curve, range of derivative curve and ISNT score) of RNFLT from optical coherence tomography (OCT) and average RNFLT were used as predictors in the SVM. The sensitivity, specificity and area under the re-ceiver operating characteristic curve (AUC) were used to evaluate the diagnostic performance of the proposed and compared methods. Results: The sensitivity of the proposed method was 97.73%, 95.45%, and 79.55%, respectively, at the specificity of 90%, 95%, and 99%.A significantly larger AUC of 98.81% (95% con-fidence interval (CI), 97.84%-99.78%) was obtained using the proposed method compared with a previous study -artificial neural networks based on RNFLT of four sectors under three division methods: 93.97% (95% CI, 90.63%-97.63%) with clock sectors division, 94.55% (95% CI, 91.43%-98.58%) with ISNT (inferior -superior-nasal-temporal) sectors division and 92.90% (95% CI, 88.87%-97.62%) with planimetric sectors division. Conclusions: The three new indexes based on RNFLT curves combined with SVM can be used to distinguish glaucoma from healthy subjects with high accuracy, performing better than conventional methods.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 4 区 数学
小类 | 4 区 应用数学 4 区 数学
最新[2025]版:
大类 | 4 区 数学
小类 | 4 区 数学 4 区 应用数学
JCR分区:
出版当年[2020]版:
Q2 MATHEMATICS Q3 MATHEMATICS, APPLIED
最新[2023]版:
Q2 MATHEMATICS Q3 MATHEMATICS, APPLIED

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25463 今日访问量:0 总访问量:1498 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)