高级检索
当前位置: 首页 > 详情页

Prediction of obstructive sleep apnea using deep learning in 3D craniofacial reconstruction

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China [2]Capital Med Univ, Key Lab Otolaryngol Head & Neck Surg, Minist Educ, Beijing, Peoples R China [3]Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Dept Elect Engn, Shenzhen, Peoples R China
出处:
ISSN:

关键词: Obstructive sleep apnea (OSA) deep learning craniofacial photographs

摘要:
Background: Obstructive sleep apnea (OSA) is a common sleep disorder. However, current diagnostic methods are labor-intensive and require professionally trained personnel. We aimed to develop a deep learning model using upper airway computed tomography (CT) to predict OSA and to warn the medical technician if a patient has OSA while the patient is undergoing any head and neck CT scan, even for other diseases.Methods: A total of 219 patients with OSA [apnea-hypopnea index (AHI) >= 10/h] and 81 controls (AHI <10/h) were enrolled. We reconstructed each patient's CT into 3 types (skeletal structures, external skin structures, and airway structures) and captured reconstructed models in 6 directions (front, back, top, bottom, left profile, and right profile). The 6 images from each patient were imported into the ResNet-18 network to extract features and output the probability of OSA using two fusion methods: Add and Concat. Five-fold cross-validation was used to reduce bias. Finally, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were calculated.Results: All 18 views with Add as the feature fusion performed better than did the other reconstruction and fusion methods. This gave the best performance for this prediction method with an AUC of 0.882. Conclusions: We present a model for predicting OSA using upper airway CT and deep learning. The model has satisfactory performance and enables CT to accurately identify patients with moderate to severe OSA.

基金:

基金编号: 81970866 QMS20190202 2020-0103-3-1

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 4 区 医学
小类 | 4 区 呼吸系统
最新[2023]版:
大类 | 3 区 医学
小类 | 4 区 呼吸系统
JCR分区:
出版当年[2021]版:
Q3 RESPIRATORY SYSTEM
最新[2023]版:
Q3 RESPIRATORY SYSTEM

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China [2]Capital Med Univ, Key Lab Otolaryngol Head & Neck Surg, Minist Educ, Beijing, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China [2]Capital Med Univ, Key Lab Otolaryngol Head & Neck Surg, Minist Educ, Beijing, Peoples R China [3]Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Dept Elect Engn, Shenzhen, Peoples R China [*1]Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Dept Elect Engn, 2279 Lishui Rd,Nanshan Dist, Shenzhen, Peoples R China [*2]Capital Med Univ, Beijing Tongren Hosp, Dept Otolaryngol, 1 Dongjiaominxiang St Dongcheng Dist, Beijing 100730, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)