高级检索
当前位置: 首页 > 详情页

Prediction and risk assessment of sepsis-associated encephalopathy in ICU based on interpretable machine learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China. [2]Department of Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. [3]Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
出处:
ISSN:

摘要:
Sepsis-associated encephalopathy (SAE) is a major complication of sepsis and is associated with high mortality and poor long-term prognosis. The purpose of this study is to develop interpretable machine learning models to predict the occurrence of SAE after ICU admission and implement the individual prediction and analysis. Patients with sepsis admitted to ICU were included. SAE was diagnosed as glasgow coma score (GCS) less than 15. Statistical analysis at baseline was performed between SAE and non-SAE. Six machine learning classifiers were employed to predict the occurrence of SAE, and the adjustment of model super parameters was performed by using Bayesian optimization method. Finally, the optimal algorithm was selected according to the prediction efficiency. In addition, professional physicians were invited to evaluate our model prediction results for further quantitative assessment of the model interpretability. The preliminary analysis of variance showed significant differences in the incidence of SAE among patients with pathogen infection. There were significant differences in physical indicators like respiratory rate, temperature, SpO2 and mean arterial pressure (P < 0.001). In addition, the laboratory results were also significantly different. The optimal classification model (XGBoost) indicated that the best risk factors (cut-off points) were creatinine (1.1 mg/dl), mean respiratory rate (18), pH (7.38), age (72), chlorine (101 mmol/L), sodium (138.5 k/ul), SAPSII score (23), platelet count (160), and phosphorus (2.4 and 5.0 mg/dL). The ranked features derived from the best model (AUC is 0.8837) were mechanical ventilation, duration of mechanical ventilation, phosphorus, SOFA score, and vasopressin usage. The SAE risk prediction model based on XGBoost created here can make very accurate predictions using simple indicators and support the visual explanation. The interpretable model was effectively evaluated by professional physicians and can help them predict the occurrence of SAE more intuitively.© 2022. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
最新[2025]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2020]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23415 今日访问量:3 总访问量:1279 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)