高级检索
当前位置: 首页 > 详情页

A Deep Learning Model for Evaluating Meibomian Glands Morphology from Meibography

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Peking Univ Third Hosp, Dept Ophthalmol, Beijing Key Lab Restorat Damaged Ocular Nerve, Beijing 100191, Peoples R China [2]Beihang Univ, Sch Comp Sci & Engn, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China [3]Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing 100051, Peoples R China
出处:
ISSN:

关键词: deep learning meibomian gland meibography dry eye

摘要:
To develop a deep learning model for automatically segmenting tarsus and meibomian gland areas on meibography, we included 1087 meibography images from dry eye patients. The contour of the tarsus and each meibomian gland was labeled manually by human experts. The dataset was divided into training, validation, and test sets. We built a convolutional neural network-based U-net and trained the model to segment the tarsus and meibomian gland area. Accuracy, sensitivity, specificity, and receiver operating characteristic curve (ROC) were calculated to evaluate the model. The area under the curve (AUC) values for models segmenting the tarsus and meibomian gland area were 0.985 and 0.938, respectively. The deep learning model achieved a sensitivity and specificity of 0.975 and 0.99, respectively, with an accuracy of 0.985 for segmenting the tarsus area. For meibomian gland area segmentation, the model obtained a high specificity of 0.96, with high accuracy of 0.937 and a moderate sensitivity of 0.751. The present research trained a deep learning model to automatically segment tarsus and the meibomian gland area from infrared meibography, and the model demonstrated outstanding accuracy in segmentation. With further improvement, the model could potentially be applied to assess the meibomian gland that facilitates dry eye evaluation in various clinical and research scenarios.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 医学:内科
最新[2023]版:
大类 | 3 区 医学
小类 | 2 区 医学:内科
JCR分区:
出版当年[2021]版:
Q2 MEDICINE, GENERAL & INTERNAL
最新[2023]版:
Q1 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Peking Univ Third Hosp, Dept Ophthalmol, Beijing Key Lab Restorat Damaged Ocular Nerve, Beijing 100191, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21173 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)