高级检索
当前位置: 首页 > 详情页

Semi-supervised Keypoint Detector and Descriptor for Retinal Image Matching

文献详情

资源类型:
WOS体系:

收录情况: ◇ CPCI(ISTP)

机构: [1]Renmin Univ China, MoE Key Lab DEKE, Beijing, Peoples R China [2]Renmin Univ China, Sch Informat, AIMC Lab, Beijing, Peoples R China [3]Visionary Intelligence Ltd, Vistel AI Lab, Beijing, Peoples R China [4]Tongren Hosp, Inst Ophthalmol, Beijing, Peoples R China
出处:
ISSN:

关键词: Retinal image matching Trainable detector and descriptor Progressive keypoint expansion

摘要:
For retinal image matching (RIM), we propose SuperRetina, the first end-to-end method with jointly trainable keypoint detector and descriptor. SuperRetina is trained in a novel semi-supervised manner. A small set of (nearly 100) images are incompletely labeled and used to supervise the network to detect keypoints on the vascular tree. To attack the incompleteness of manual labels at each training epoch. By utilizing a keypoint-based improved triplet descriptors at full input image size. Extensive experiments on multiple real-world datasets justify the viability of SuperRetina. Even with manual labeling replaced by auto labeling and thus making the training process fully manual-annotation free, SuperRetina compares favorably against a number of strong baselines for two RIM tasks, i.e. image registration and identity verification.

基金:
语种:
被引次数:
WOS:
第一作者:
第一作者机构: [1]Renmin Univ China, MoE Key Lab DEKE, Beijing, Peoples R China [2]Renmin Univ China, Sch Informat, AIMC Lab, Beijing, Peoples R China
通讯作者:
通讯机构: [1]Renmin Univ China, MoE Key Lab DEKE, Beijing, Peoples R China [2]Renmin Univ China, Sch Informat, AIMC Lab, Beijing, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)