For retinal image matching (RIM), we propose SuperRetina, the first end-to-end method with jointly trainable keypoint detector and descriptor. SuperRetina is trained in a novel semi-supervised manner. A small set of (nearly 100) images are incompletely labeled and used to supervise the network to detect keypoints on the vascular tree. To attack the incompleteness of manual labels at each training epoch. By utilizing a keypoint-based improved triplet descriptors at full input image size. Extensive experiments on multiple real-world datasets justify the viability of SuperRetina. Even with manual labeling replaced by auto labeling and thus making the training process fully manual-annotation free, SuperRetina compares favorably against a number of strong baselines for two RIM tasks, i.e. image registration and identity verification.
基金:
NSFC [62172420, 62072463]; BJNSF [4202033]; Public Computing Cloud, Renmin University of China
语种:
外文
被引次数:
WOS:
第一作者:
第一作者机构:[1]Renmin Univ China, MoE Key Lab DEKE, Beijing, Peoples R China[2]Renmin Univ China, Sch Informat, AIMC Lab, Beijing, Peoples R China
通讯作者:
通讯机构:[1]Renmin Univ China, MoE Key Lab DEKE, Beijing, Peoples R China[2]Renmin Univ China, Sch Informat, AIMC Lab, Beijing, Peoples R China
推荐引用方式(GB/T 7714):
Liu Jiazhen,Li Xirong,Wei Qijie,et al.Semi-supervised Keypoint Detector and Descriptor for Retinal Image Matching[J].COMPUTER VISION, ECCV 2022, PT XXI.2022,13681:593-609.doi:10.1007/978-3-031-19803-8_35.
APA:
Liu, Jiazhen,Li, Xirong,Wei, Qijie,Xu, Jie&Ding, Dayong.(2022).Semi-supervised Keypoint Detector and Descriptor for Retinal Image Matching.COMPUTER VISION, ECCV 2022, PT XXI,13681,
MLA:
Liu, Jiazhen,et al."Semi-supervised Keypoint Detector and Descriptor for Retinal Image Matching".COMPUTER VISION, ECCV 2022, PT XXI 13681.(2022):593-609