高级检索
当前位置: 首页 > 详情页

An approach combining deep learning and molecule docking for drug discovery of cathepsin L

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: Cathepsin L deep learning molecular docking diabetes drug discovery

摘要:
Objectives: Cathepsin L (CTSL) is a promising therapeutic target for metabolic disorders and COVID-19. However, there are still no clinically available CTSL inhibitors. Our objective is to develop an approach for the discovery of potential reversible covalent CTSL inhibitors. Methods: The authors combined Chemprop, a deep learning-based strategy, and the Schrodinger CovDock algorithm to identify potential CTSL inhibitors. First, they used Chemprop to train a deep learning model capable of predicting whether a molecule would inhibit the activity of CTSL and performed predictions on ZINC20 in-stock librarie (similar to 9.2 million molecules). Then, they selected the top-200 predicted molecules and performed the Schrodinger covalent docking algorithm to explore the binding patterns to CTSL (PDB: 5MQY). The authors then calculated the binding energies using Prime MM/GBSA and examined the stability between the best two molecules and CTSL using 100ns molecular dynamics simulations. Results: The authors found five molecules that showed better docking results than the well-known cathepsin inhibitor odanacatib. Notably, two of these molecules, ZINC-35287427 and ZINC-1857528743, showed better docking results with CTSL compared to other cathepsins. Conclusion: Our approach enables drug discovery from large-scale databases with little computational consumption, which will save the cost and time required for drug discovery.

基金:

基金编号: 82170809

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版
大类 | 2 区 医学
小类 | 2 区 药学
最新[2023]版
大类 | 2 区 医学
小类 | 2 区 药学
JCR分区:
出版当年[2021]版:
Q1 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
共同第一作者:
通讯作者:
通讯机构: [1]Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China [*1]Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)