高级检索
当前位置: 首页 > 详情页

Improving lesion conspicuity in abdominal dual-energy CT with deep learning image reconstruction: a prospective study with five readers

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China [2]Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China [3]Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215028, China [4]Computed Tomography Research Center, GE Healthcare, Beijing 100176, China [5]Computed Tomography Research Center, GE Healthcare, Shanghai 201203, China [6]Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
出处:
ISSN:

摘要:
To evaluate image quality, diagnostic acceptability, and lesion conspicuity in abdominal dual-energy CT (DECT) using deep learning image reconstruction (DLIR) compared to those using adaptive statistical iterative reconstruction-V (Asir-V) at 50% blending (AV-50), and to identify potential factors impacting lesion conspicuity.The portal-venous phase scans in abdominal DECT of 47 participants with 84 lesions were prospectively included. The raw data were reconstructed to virtual monoenergetic image (VMI) at 50 keV using filtered back-projection (FBP), AV-50, and DLIR at low (DLIR-L), medium (DLIR-M), and high strength (DLIR-H). A noise power spectrum (NPS) was generated. CT number and standard deviation values of eight anatomical sites were measured. Signal-to-noise (SNR), and contrast-to-noise ratio (CNR) values were calculated. Five radiologists assessed image quality in terms of image contrast, image noise, image sharpness, artificial sensation, and diagnostic acceptability, and evaluated the lesion conspicuity.DLIR further reduced image noise (p < 0.001) compared to AV-50 while better preserved the average NPS frequency (p < 0.001). DLIR maintained CT number values (p > 0.99) and improved SNR and CNR values compared to AV-50 (p < 0.001). DLIR-H and DLIR-M showed higher ratings in all image quality analyses than AV-50 (p < 0.001). DLIR-H provided significantly better lesion conspicuity than AV-50 and DLIR-M regardless of lesion size, relative CT attenuation to surrounding tissue, or clinical purpose (p < 0.05).DLIR-H could be safely recommended for routine low-keV VMI reconstruction in daily contrast-enhanced abdominal DECT to improve image quality, diagnostic acceptability, and lesion conspicuity.• DLIR is superior to AV-50 in noise reduction, with less shifts of the average spatial frequency of NPS towards low frequency, and larger improvements of NPS noise, noise peak, SNR, and CNR values. • DLIR-M and DLIR-H generate better image quality in terms of image contrast, noise, sharpness, artificial sensation, and diagnostic acceptability than AV-50, while DLIR-H provides better lesion conspicuity than AV-50 and DLIR-M. • DLIR-H could be safely recommended as a new standard for routine low-keV VMI reconstruction in contrast-enhanced abdominal DECT to provide better lesion conspicuity and better image quality than the standard AV-50.© 2023. The Author(s), under exclusive licence to European Society of Radiology.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2021]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23624 今日访问量:0 总访问量:1285 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)