高级检索
当前位置: 首页 > 详情页

Deep learning-based diagnosis of osteoblastic bone metastases and bone islands in computed tomograph images: a multicenter diagnostic study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Radiology, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital, Medical College of Jinan University), 396 Tongfu Road, Guangzhou, 510220, Guangdong Province, China. [2]Department of Radiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, 241 Liuyang Road, Wuhan, 430063, Hubei Province, China. [3]Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1Panfu Road, Guangzhou, 510180, Guangdong Province, China.
出处:
ISSN:

关键词: Osteogenesis  Bone neoplasms  Deep learning  Computed tomography  X-ray

摘要:
To develop and validate a deep learning (DL) model based on CT for differentiating bone islands and osteoblastic bone metastases.The patients with sclerosing bone lesions (SBLs) were retrospectively included in three hospitals. The images from site 1 were randomly assigned to the training (70%) and intrinsic verification (10%) datasets for developing the two-dimensional (2D) DL model (single-slice input) and "2.5-dimensional" (2.5D) DL model (three-slice input) and to the internal validation dataset (20%) for evaluating the performance of both models. The diagnostic performance was evaluated using the internal validation set from site 1 and additional external validation datasets from site 2 and site 3. And statistically analyze the performance of 2D and 2.5D DL models.In total, 1918 SBLs in 728 patients in site 1, 122 SBLs in 71 patients in site 2, and 71 SBLs in 47 patients in site 3 were used to develop and test the 2D and 2.5D DL models. The best performance was obtained using the 2.5D DL model, which achieved an AUC of 0.996 (95% confidence interval [CI], 0.995-0.996), 0.958 (95% CI, 0.958-0.960), and 0.952 (95% CI, 0.951-0.953) and accuracies of 0.950, 0.902, and 0.863 for the internal validation set, the external validation set from site 2 and site 3, respectively.A DL model based on a three-slice CT image input (2.5D DL model) can improve the prediction of osteoblastic bone metastases, which can facilitate clinical decision-making.• This study investigated the value of deep learning models in identifying bone islands and osteoblastic bone metastases. • Three-slice CT image input (2.5D DL model) outweighed the 2D model in the classification of sclerosing bone lesions. • The 2.5D deep learning model showed excellent performance using the internal (AUC, 0.996) and two external (AUC, 0.958; AUC, 0.952) validation sets.© 2023. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2021]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Radiology, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital, Medical College of Jinan University), 396 Tongfu Road, Guangzhou, 510220, Guangdong Province, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25471 今日访问量:0 总访问量:1498 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)