高级检索
当前位置: 首页 > 详情页

Evaluation of the Hand Motion and Peeling Force in Inner Limiting Membrane Peeling

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, China. [2]School of Mechanical Engineering and Automation, Beihang University, Beijing, China. [3]Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Laboratory, Capital Medical University, Beijing, China. [4]School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing, China.
出处:
ISSN:

摘要:
Robot assistance in membrane peeling may improve precision and dexterity or prevent complications by task automation. To design robotic devices, surgical instruments' velocity, acceptable position/pose error, and load ability need to be precisely quantified.A fiber Bragg grating and inertial sensors are attached to forceps. Data collected from forceps and microscope images are used to quantify a surgeon's hand motion (tremor, velocity, posture perturbation) and operation force (voluntary and involuntary) in inner limiting membrane peeling. All peeling attempts are performed on rabbit eyes in vivo by expert surgeons.The root mean square (RMS) of the tremor amplitude is 20.14 µm (transverse, X), 23.99 µm (transverse, Y), and 11.68 µm (axial, Z). The RMS posture perturbation is 0.43° (around X), 0.74° (around Y), and 0.46° (around Z). The RMS angular velocities are 1.74°/s (around X), 1.66°/s (around Y), and 1.46°/s (around Z), whereas the RMS velocities are 1.05 mm/s (transverse) and 1.44 mm/s (axial). The RMS force is 7.39 mN (voluntary force), 7.41 mN (operation force), and 0.5 mN (involuntary force).Hand motion and operation force are measured in membrane peeling. These parameters provide a potential baseline for determining a surgical robot's accuracy, velocity, and load capacity.Baseline data are obtained that can be used to guide ophthalmic robot design/evaluation.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 3 区 眼科学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 眼科学
JCR分区:
出版当年[2021]版:
Q2 OPHTHALMOLOGY
最新[2023]版:
Q2 OPHTHALMOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, China. [2]School of Mechanical Engineering and Automation, Beihang University, Beijing, China.
共同第一作者:
通讯作者:
通讯机构: [2]School of Mechanical Engineering and Automation, Beihang University, Beijing, China. [3]Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Laboratory, Capital Medical University, Beijing, China. [*1]37th Xueyuan Road, Haidian District, Beijing 100191, China. [*2]Beijing Tongren Eye Center, Capital University of Medical Sciences, No. 1 Dong Jiao Min Xiang, Dongcheng District, Beijing 100730, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)