高级检索
当前位置: 首页 > 详情页

Deep learning network with differentiable dynamic programming for retina OCT surface segmentation

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, USA. [2]Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital University of Medical Science, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.
出处:
ISSN:

摘要:
Multiple-surface segmentation in optical coherence tomography (OCT) images is a challenging problem, further complicated by the frequent presence of weak image boundaries. Recently, many deep learning-based methods have been developed for this task and yield remarkable performance. Unfortunately, due to the scarcity of training data in medical imaging, it is challenging for deep learning networks to learn the global structure of the target surfaces, including surface smoothness. To bridge this gap, this study proposes to seamlessly unify a U-Net for feature learning with a constrained differentiable dynamic programming module to achieve end-to-end learning for retina OCT surface segmentation to explicitly enforce surface smoothness. It effectively utilizes the feedback from the downstream model optimization module to guide feature learning, yielding better enforcement of global structures of the target surfaces. Experiments on Duke AMD (age-related macular degeneration) and JHU MS (multiple sclerosis) OCT data sets for retinal layer segmentation demonstrated that the proposed method was able to achieve subvoxel accuracy on both datasets, with the mean absolute surface distance (MASD) errors of 1.88 ± 1.96μm and 2.75 ± 0.94μm, respectively, over all the segmented surfaces.© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 核医学 2 区 光学 2 区 生化研究方法
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 生化研究方法 2 区 光学 2 区 核医学
JCR分区:
出版当年[2021]版:
Q2 BIOCHEMICAL RESEARCH METHODS Q2 OPTICS Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 OPTICS Q2 BIOCHEMICAL RESEARCH METHODS Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, USA.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)