高级检索
当前位置: 首页 > 详情页

CpG ODN/Mangiferin Dual Delivery through Calcium Alginate Hydrogels Inhibits Immune-Mediated Osteoclastogenesis and Promotes Alveolar Bone Regeneration in Mice

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA. [2]Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China. [3]Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA. [4]Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
出处:
ISSN:

摘要:
The immune system plays an important role in the skeletal system during bone repair and regeneration. The controlled release of biological factors from the immune system could facilitate and optimize the bone remodeling process through the regulation of the activities of bone cells. This study aimed to determine the effect of the controlled delivery of immunomodulatory biologicals on bone regeneration. Immunostimulatory cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN) and glucosylxanthone Mangiferin (MAG)-embedded microbeads were incubated with P. gingivalis-challenged splenocytes, or co-cultured with RAW264.7 cells. The effect of CpG ODN/MAG-containing microbeads on bone regeneration was then tested in vivo in a mouse alveolar bone defect model. The results demonstrated that MAG significantly antagonized P. gingivalis proliferation and reduced the live/dead cell ratio. After the addition of CpG ODN + MAG microbeads, anti-inflammatory cytokines IL-10 and IL-4 were upregulated on day 2 but not day 4, whereas pro-inflammatory cytokine IL-1β responses showed no difference at both timepoints. RANKL production by splenocytes and TRAP+ cell formation of RAW264.7 cells were inhibited by the addition of CpG ODN + MAG microbeads. Alveolar bony defects, filled with CpG ODN + MAG microbeads, showed significantly increased new bone after 4 weeks. In summary, this study evaluated a new hydrogel-based regimen for the local delivery and controlled release of biologicals to repair and regenerate alveolar bony defects. The combined CpG ODN + MAG treatment may promote alveolar bone regeneration through the anti-microbial/anti-inflammatory effects and the inhibition of RANKL-mediated osteoclastogenesis.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 生物学
小类 | 3 区 生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 2 区 生物学
JCR分区:
出版当年[2021]版:
Q1 BIOLOGY
最新[2023]版:
Q1 BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA. [2]Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.
通讯作者:
通讯机构: [1]Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA. [3]Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25477 今日访问量:1 总访问量:1499 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)