高级检索
当前位置: 首页 > 详情页

A fundus image classification framework for learning with noisy labels

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Beijing Institute of Technology, No. 5, Zhong Guan Cun South Street, Beijing, 100081, China [2]Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
出处:
ISSN:

关键词: Fundus diseases classification Noisy labels Confidence learning Negative learning Sharpness-aware minimization

摘要:
Fundus images are widely used in the screening and diagnosis of eye diseases. Current classification algorithms for computer-aided diagnosis in fundus images rely on large amounts of data with reliable labels. However, the appearance of noisy labels degrades the performance of data-dependent algorithms, such as supervised deep learning. A noisy label learning framework suitable for the multiclass classification of fundus diseases is presented in this paper, which combines data cleansing (DC), adaptive negative learning (ANL), and sharpness-aware minimization (SAM) modules. Firstly, the DC module filters the noisy labels in the training dataset based on the prediction confidence. Then, the ANL module modifies the loss function by choosing complementary labels, which are neither the given labels nor the labels with the highest confidence. Moreover, for better generalization, the SAM module is applied by simultaneously optimizing the loss and its sharpness. Extensive experiments on both private and public datasets show that our method greatly promotes the performance for classification of multiple fundus diseases with noisy labels.Copyright © 2023 Elsevier Ltd. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:生物医学 2 区 核医学
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 工程:生物医学 2 区 核医学
JCR分区:
出版当年[2021]版:
Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Beijing Institute of Technology, No. 5, Zhong Guan Cun South Street, Beijing, 100081, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)