高级检索
当前位置: 首页 > 详情页

BiMNet: A Multimodal Data Fusion Network for continuous circular capsulorhexis Action Segmentation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100096, Peoples R China [2]Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China [3]Capital Med Univ, Beijing Tongren Hosp, Ophthalmol Dept, Beijing 100005, Peoples R China [4]Univ Fed Ceara, Dept Teleinformat Engn, BR-60811905 Fortaleza, CE, Brazil [5]Sun Yat Sen Univ, Sch Biomed Engn, Guangzhou 510275, Peoples R China
出处:
ISSN:

关键词: Cataract surgery Continuous circumferential capsulotomy Continuous action segmentation Multimodal data fusion Imbalanced data

摘要:
Completing continuous circular capsulorhexis (CCC) requires the operator to perform fine operations, which is difficult to do accurately when continuous fine actions are out of balance in the classification of CCC procedures. Multimodal deep learning can improve the classifier's performance, but the recognition accuracy of inferior classes is difficult to improve. To solve these problems, a bidirect-gate recurrent unit (Bi-GRU)-attention-based multimodal, multi-timescale data fusion network (BiMNet) is proposed, which contains a data extraction module called a skip-concatenate gate recurrent unit (SC-GRU), a bimodal data fusion attention computation, and a decoder module. The combination of these modules can fully extract the features of different temporal scales in multimodal action data and fuse them effectively. The model is validated using the ophthalmologist CCC multimodal maneuver dataset, which was collected by the data collection platform constructed in this research, achieving an accuracy of 0.9124 +/- 0.0125 in continuous action sequence segmentation and improving the F1-score of minority class recognition to over 80%, making it more effective than baseline algorithms.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 计算机科学
小类 | 2 区 计算机:人工智能 2 区 工程:电子与电气 2 区 运筹学与管理科学
最新[2023]版:
大类 | 1 区 计算机科学
小类 | 2 区 计算机:人工智能 2 区 工程:电子与电气 2 区 运筹学与管理科学
JCR分区:
出版当年[2022]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
最新[2023]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100096, Peoples R China [2]Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China [*1]School of Automation, Beijing Information Science and Technology University, Beijing, 100096, China
通讯作者:
通讯机构: [1]Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100096, Peoples R China [2]Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China [*1]School of Automation, Beijing Information Science and Technology University, Beijing, 100096, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)