高级检索
当前位置: 首页 > 详情页

Machine Learning-Based MRI Radiogenomics for Evaluation of Response to Induction Chemotherapy in Head and Neck Squamous Cell Carcinoma

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China [2]Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: Radiogenomics Machine learning Induction chemotherapy Head and neck squamous cell carcinoma Predictive model

摘要:
To develop and validate a radiogenomics model integrating clinical data, radiomics-based machine learning (RBML) classifiers, and transcriptomics data for predicting the response to induction chemotherapy (IC) in patients with head and neck squamous cell carcinoma (HNSCC).Radiomics features derived from T2-weighted, pre- and post-contrast-enhanced T1-weighted MRI sequences, clinical data, and RNA sequencing data of 150 patients with HNSCC were included in the study. Analysis of variance or recursive feature elimination was used to reduce radiomics features. Three RBML classifiers were developed to distinguish non-responders from responders. Weighted correlation network analysis (WGCNA) was performed to identify the correlation between clinical data or radiomics features and molecular features; subsequently, protein interaction and functional enrichment analyses were performed. The predictive performance of the radiogenomics model integrating significant clinical variables, RBML classifiers, and molecular features was evaluated using receiver operating characteristic curve analysis.Five radiomics features and two conventional MRI findings significantly stratified HNSCC patients into responders and non-responders. On WGCNA analysis, 809 genes showed a significant correlation with two radiomics features. Functional enrichment analysis suggested that our proposed radiomics features could reflect the T cell-mediated immune response and immune infiltration of HNSCC. The radiogenomics model showed the highest area under the curve (0.88[95%CI 0.75-0.96]) for predicting IC response, which was better than MRI findings(p = 0.0407) or molecular features(p = 0.004) alone, but showed no significant difference with that of RBML model (p = 0.2254) in test cohort.Merging imaging phenotypes with transcriptomic data improved the prediction of IC response in HNSCC.Copyright © 2023 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2022]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23419 今日访问量:4 总访问量:1280 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)