高级检索
当前位置: 首页 > 详情页

Aging effects on dual-route speech processing networks during speech perception in noise

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China [2]Department of Audiology, University of the Pacific, San Francisco, California, USA [3]The House Institute, Los Angeles, California, USA
出处:
ISSN:

关键词: dual-route functional connectivity dual-route neural architecture fNIRS healthy aging speech processing in a noisy Wernicke's area

摘要:
Healthy aging leads to complex changes in the functional network of speech processing in a noisy environment. The dual-route neural architecture has been applied to the study of speech processing. Although evidence suggests that senescent increases activity in the brain regions across the dorsal and ventral stream regions to offset reduced periphery, the regulatory mechanism of dual-route functional networks underlying such compensation remains largely unknown. Here, by utilizing functional near-infrared spectroscopy (fNIRS), we investigated the compensatory mechanism of the dual-route functional connectivity, and its relationship with healthy aging by using a speech perception task at varying signal-to-noise ratios (SNR) in healthy individuals (young adults, middle-aged adults, and older adults). Results showed that the speech perception scores showed a significant age-related decrease with the reduction of the SNR. The analysis results of dual-route speech processing networks showed that the functional connection of Wernicke's area and homolog Wernicke's area were age-related increases. Further to clarify the age-related characteristics of the dual-route speech processing networks, graph-theoretical network analysis revealed an age-related increase in the efficiency of the networks, and the age-related differences in nodal characteristics were found both in Wernicke's area and homolog Wernicke's area under noise environment. Thus, Wernicke's area might be a key network hub to maintain efficient information transfer across the speech process network with healthy aging. Moreover, older adults would recruit more resources from the homologous Wernicke's area in a noisy environment. The recruitment of the homolog of Wernicke's area might provide a means of compensation for older adults for decoding speech in an adverse listening environment. Together, our results characterized dual-route speech processing networks at varying noise environments and provided new insight for the compensatory theories of how aging modulates the dual-route speech processing functional networks.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 2 区 神经成像 2 区 神经科学 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 神经成像 2 区 核医学 3 区 神经科学
JCR分区:
出版当年[2022]版:
Q1 NEUROIMAGING Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q2 NEUROSCIENCES
最新[2023]版:
Q1 NEUROIMAGING Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q2 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
共同第一作者:
通讯作者:
通讯机构: [1]Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China [*1]Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23419 今日访问量:4 总访问量:1280 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)