高级检索
当前位置: 首页 > 详情页

基于人工智能自动分析技术的视网膜血管形态参数测量及特征分析

Measurement and characterization of retinal vascular morphology parameters based on artificial intelligence automated analysis technology

文献详情

资源类型:

收录情况: ◇ 统计源期刊 ◇ 北大核心 ◇ CSCD-C ◇ 中华系列

机构: [1]首都医科大学附属北京同仁医院 北京同仁眼科中心 眼内肿瘤诊治研究北京市重点实验室 北京市眼科学与视觉科学重点实验室 医学人工智能研究与验证工信部重点实验室,北京100730 [2]依未科技(北京)有限公司,北京100085
出处:
ISSN:

关键词: 视网膜血管 眼底照相 形态学参数 人工智能

摘要:
目的:基于人工智能技术对视网膜血管形态学参数进行全自动定量测量,分析我国北方50岁以上人群视网膜血管参数及分布特征。方法:采用横断面研究方法,纳入2011年1月至2021年12月就诊于北京同仁医院的50岁以上无眼底病的患者1 842例,对纳入的受试者进行标准化问卷调查、抽血和眼科检查;收集各受试者任意一眼以视盘为中心的彩色眼底照片,采用基于深度学习的语义分割网络ResNet101-Unet构建血管分割模型,进行全自动视网膜血管参数定量测量,主要测量指标包括视网膜血管分支夹角、血管分形维数、血管平均管径和血管平均弯曲度。比较不同性别间各视网膜参数的差异。采用多元线性回归分析法分析最佳矫正视力、眼压、眼轴长度等眼部因素和性别、年龄、高血压、糖尿病、心血管疾病等全身因素是否是各视网膜血管参数的影响因素。结果:模型对于血管分割和视盘分割的准确度均高于0.95。1 842例受试者血管分支夹角为(51.023±11.623)°;血管分形维数为1.573(1.542,1.592);血管平均管径为64.124(60.814,69.053)μm;血管平均弯曲度为(0.001 062±0.000 165)°。男性血管分支夹角大于女性,血管平均管径和血管平均弯曲度小于女性,差异均有统计学意义(均 P<0.05)。全身因素多元线性回归分析结果显示,患有心血管疾病的人群较无心血管疾病的人群血管平均管径增大1.142 μm( B=1.142, P=0.029,95% CI:0.116~2.167);血管平均弯曲度与高血压( B=3.053×10 -5, P=0.002,95% CI:1.167×10 -5~4.934×10 -5)和饮酒量( B=1.036×10 -5, P=0.014,95% CI:0.211×10 -5~1.860×10 -5)呈正相关,与高脂血症呈负相关( B=-2.422×10 -5, P=0.015,95% CI:-4.382×10 -5~-0.462×10 -5)。眼部因素多元线性回归分析结果显示,眼轴长度每增加1 mm,血管分形维数减小0.004( B=-0.004, P<0.001,95% CI:-0.006~-0.002),血管平均管径减小0.266 μm( B=-0.266, P=0.037,95% CI:-0.516~-0.016),血管平均弯曲度减小-2.45×10 -5°( B=-2.45×10 -5, P<0.001,95% CI:-0.313×10 -5~-0.177×10 -5)。BCVA每增加1.0,血管分支夹角增大3.992°( B=3.992, P=0.004,95% CI:1.283~6.702),血管分形维数增大0.090( B=0.090, P<0.001,95% CI:0.078~0.102),血管平均管径减小14.813 μm( B=-14.813, P<0.001,95% CI:-16.474~-13.153)。 结论:成功构建视网膜血管分割模型。视网膜血管参数与性别、年龄、系统性疾病和眼部因素存在关联。

基金:
语种:
第一作者:
第一作者机构: [1]首都医科大学附属北京同仁医院 北京同仁眼科中心 眼内肿瘤诊治研究北京市重点实验室 北京市眼科学与视觉科学重点实验室 医学人工智能研究与验证工信部重点实验室,北京100730
通讯作者:
推荐引用方式(GB/T 7714):

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)