高级检索
当前位置: 首页 > 详情页

Microfluidic organ chip of fluid-solid dynamic curved interface

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn, Key Lab Biomech & Mechanobiol,Minist Educ, Beijing 100083, Peoples R China [2]New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA [3]Strateg Support Force Med Ctr, Dept Gynecol & Obstet, Beijing 100101, Peoples R China [4]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Glaucoma Dept, Beijing 100730, Peoples R China [5]State Ind Base Stem Cell Engn Prod, Tianjin 300384, Peoples R China [6]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100083, Peoples R China [7]Beihang Univ, Sch Engn Med, Beijing 100083, Peoples R China
出处:
ISSN:

摘要:
Dynamic curved interfaces are fundamental and ubiquitous structures in biological systems. However, replicating the structure and function associated with these interfaces for mechanobiology and drug screening is challenging. Here, we develop a dynamic curvature-enabled microfluidic organ chip of two fluid-solid dynamic curved interfaces. One interface effectively integrates adjustable biomechanics, and the other controls drug release with open microfluidics. The fluid-solid interface sensed by the cells can modulate the residual stress, stiffness, strain of the solid phase, and the flow shear stress of the fluid phase. Using the chip, we investigate the mechanotransductive responses of endothelial and epithelial cells, including Piezo1, Ca2+, and YAP, and reveal that the response of the endothelium to combined dynamic cyclic strain and flow shear stress is different from separate stimulation and also disparate from the epithelium. Furthermore, direct and high-efficiency drug release to cells is realized by constructing the other fluid-solid interface on the back side of cells, where drugs are encapsulated within cross-linked alginate hydrogel in the open microfluidic channel. Then, we replicate object-specific and location-specific biomechanical environments within carotid bifurcation and prove the effectiveness of drug delivery. Our design exemplifies dynamic curved biological interfaces with controlled mechanical environments and holds potential for patient-specific medicine.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 物理与天体物理
小类 | 2 区 物理:应用
最新[2023]版:
大类 | 1 区 物理与天体物理
小类 | 2 区 物理:应用
JCR分区:
出版当年[2022]版:
Q1 PHYSICS, APPLIED
最新[2023]版:
Q1 PHYSICS, APPLIED

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn, Key Lab Biomech & Mechanobiol,Minist Educ, Beijing 100083, Peoples R China
通讯作者:
通讯机构: [1]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn, Key Lab Biomech & Mechanobiol,Minist Educ, Beijing 100083, Peoples R China [7]Beihang Univ, Sch Engn Med, Beijing 100083, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)