高级检索
当前位置: 首页 > 详情页

Large AI Models in Health Informatics: Applications, Challenges, and the Future

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Precis Robot Hong Kong Ltd, Hong Kong, Peoples R China [2]Imperial Coll London, Dept Comp, London SW7 2AZ, England [3]Chinese Univ Hong Kong, Dept Biomed Engn, Hong Kong, Peoples R China [4]Kings Coll London, Dept Informat, London WC2R 2LS, England [5]Stanford Univ, Sch Engn, Stanford, CA 94305 USA [6]Univ Oxford, Dept Engn Sci, Oxford OX1 2JD, England [7]Univ Hong Kong, Fac Engn, Hong Kong, Peoples R China [8]Imperial Coll London, Dept Surg & Canc, London SW7 2AZ, England [9]Imperial Coll London, Hamlyn Ctr Robot Surg, London SW7 2AZ, England [10]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing 100054, Peoples R China [11]Beijing Ophthalmol Visual & Sci Key Lab, Beijing 100005, Peoples R China [12]Univ Missouri, Dept Elect Engn, Columbia, MO 65211 USA [13]Univ Missouri, Christopher S Bond Life Sci Ctr, Columbia, MO 65211 USA [14]Imperial Coll London, Fac Med, London SW7 2AZ, England
出处:
ISSN:

关键词: Artificial intelligence bioinformatics biomedicine deep learning foundation model health informatics healthcare medical imaging

摘要:
Large AI models, or foundation models, are models recently emerging with massive scales both parameter-wise and data-wise, the magnitudes of which can reach beyond billions. Once pretrained, large AI models demonstrate impressive performance in various downstream tasks. A prime example is ChatGPT, whose capability has compelled people's imagination about the far-reaching influence that large AI models can have and their potential to transform different domains of our lives. In health informatics, the advent of large AI models has brought new paradigms for the design of methodologies. The scale of multi-modal data in the biomedical and health domain has been ever-expanding especially since the community embraced the era of deep learning, which provides the ground to develop, validate, and advance large AI models for breakthroughs in health-related areas. This article presents a comprehensive review of large AI models, from background to their applications. We identify seven key sectors in which large AI models are applicable and might have substantial influence, including: 1) bioinformatics; 2) medical diagnosis; 3) medical imaging; 4) medical informatics; 5) medical education; 6) public health; and 7) medical robotics. We examine their challenges, followed by a critical discussion about potential future directions and pitfalls of large AI models in transforming the field of health informatics.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 工程技术
小类 | 1 区 计算机:跨学科应用 1 区 医学:信息 1 区 计算机:信息系统 1 区 数学与计算生物学
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 医学:信息
JCR分区:
出版当年[2021]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Precis Robot Hong Kong Ltd, Hong Kong, Peoples R China [2]Imperial Coll London, Dept Comp, London SW7 2AZ, England [3]Chinese Univ Hong Kong, Dept Biomed Engn, Hong Kong, Peoples R China
通讯作者:
通讯机构: [1]Precis Robot Hong Kong Ltd, Hong Kong, Peoples R China [14]Imperial Coll London, Fac Med, London SW7 2AZ, England
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21173 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)