高级检索
当前位置: 首页 > 详情页

Enhancing the fairness of AI prediction models by Quasi-Pareto improvement among heterogeneous thyroid nodule population

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 自然指数

机构: [1]StateKey Laboratory of MicrobialMetabolism, Joint International Research Laboratory ofMetabolic andDevelopmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China [2]SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for TranslationalMedicine, MoE Key Lab of Artificial Intelligence, AI Institute Shanghai Jiao Tong University, Shanghai 200240, PR China [3]Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, PR China [4]Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200020, PR China.
出处:
ISSN:

摘要:
Artificial Intelligence (AI) models for medical diagnosis often face challenges of generalizability and fairness. We highlighted the algorithmic unfairness in a large thyroid ultrasound dataset with significant diagnostic performance disparities across subgroups linked causally to sample size imbalances. To address this, we introduced the Quasi-Pareto Improvement (QPI) approach and a deep learning implementation (QP-Net) combining multi-task learning and domain adaptation to improve model performance among disadvantaged subgroups without compromising overall population performance. On the thyroid ultrasound dataset, our method significantly mitigated the area under curve (AUC) disparity for three less-prevalent subgroups by 0.213, 0.112, and 0.173 while maintaining the AUC for dominant subgroups; we also further confirmed the generalizability of our approach on two public datasets: the ISIC2019 skin disease dataset and the CheXpert chest radiograph dataset. Here we show the QPI approach to be widely applicable in promoting AI for equitable healthcare outcomes.© 2024. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
最新[2023]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
JCR分区:
出版当年[2022]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]StateKey Laboratory of MicrobialMetabolism, Joint International Research Laboratory ofMetabolic andDevelopmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China [2]SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for TranslationalMedicine, MoE Key Lab of Artificial Intelligence, AI Institute Shanghai Jiao Tong University, Shanghai 200240, PR China
共同第一作者:
通讯作者:
通讯机构: [1]StateKey Laboratory of MicrobialMetabolism, Joint International Research Laboratory ofMetabolic andDevelopmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China [2]SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for TranslationalMedicine, MoE Key Lab of Artificial Intelligence, AI Institute Shanghai Jiao Tong University, Shanghai 200240, PR China [4]Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200020, PR China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21193 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)