高级检索
当前位置: 首页 > 详情页

Improved dual-aggregation polyp segmentation network combining a pyramid vision transformer with a fully convolutional network

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. [2]Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China.
出处:
ISSN:

摘要:
Automatic and precise polyp segmentation in colonoscopy images is highly valuable for diagnosis at an early stage and surgery of colorectal cancer. Nevertheless, it still posed a major challenge due to variations in the size and intricate morphological characteristics of polyps coupled with the indistinct demarcation between polyps and mucosas. To alleviate these challenges, we proposed an improved dual-aggregation polyp segmentation network, dubbed Dua-PSNet, for automatic and accurate full-size polyp prediction by combining both the transformer branch and a fully convolutional network (FCN) branch in a parallel style. Concretely, in the transformer branch, we adopted the B3 variant of pyramid vision transformer v2 (PVTv2-B3) as an image encoder for capturing multi-scale global features and modeling long-distant interdependencies between them whilst designing an innovative multi-stage feature aggregation decoder (MFAD) to highlight critical local feature details and effectively integrate them into global features. In the decoder, the adaptive feature aggregation (AFA) block was constructed for fusing high-level feature representations of different scales generated by the PVTv2-B3 encoder in a stepwise adaptive manner for refining global semantic information, while the ResidualBlock module was devised to mine detailed boundary cues disguised in low-level features. With the assistance of the selective global-to-local fusion head (SGLFH) module, the resulting boundary details were aggregated selectively with these global semantic features, strengthening these hierarchical features to cope with scale variations of polyps. The FCN branch embedded in the designed ResidualBlock module was used to encourage extraction of highly merged fine features to match the outputs of the Transformer branch into full-size segmentation maps. In this way, both branches were reciprocally influenced and complemented to enhance the discrimination capability of polyp features and enable a more accurate prediction of a full-size segmentation map. Extensive experiments on five challenging polyp segmentation benchmarks demonstrated that the proposed Dua-PSNet owned powerful learning and generalization ability and advanced the state-of-the-art segmentation performance among existing cutting-edge methods. These excellent results showed our Dua-PSNet had great potential to be a promising solution for practical polyp segmentation tasks in which wide variations of data typically occurred.© 2024 Optica Publishing Group.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 2 区 生化研究方法 2 区 光学 2 区 核医学
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 生化研究方法 3 区 光学 3 区 核医学
JCR分区:
出版当年[2022]版:
Q2 BIOCHEMICAL RESEARCH METHODS Q2 OPTICS Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 BIOCHEMICAL RESEARCH METHODS Q2 OPTICS Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23459 今日访问量:6 总访问量:1282 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)