高级检索
当前位置: 首页 > 详情页

Temporal control in shell-core structured nanofilm for tracheal cartilage regeneration: synergistic optimization of anti-inflammation and chondrogenesis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ CSCD-C ◇ 卓越:高起点新刊

机构: [1]Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China. [2]Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200050, China. [3]Operation Room Department, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China. [4]Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, 310005, China. [5]Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China.
出处:
ISSN:

关键词: temporal control core–shell structured nanofilm tracheal cartilage regeneration anti-inflammation

摘要:
Cartilage tissue engineering offers hope for tracheal cartilage defect repair. Establishing an anti-inflammatory microenvironment stands as a prerequisite for successful tracheal cartilage restoration, especially in immunocompetent animals. Hence, scaffolds inducing an anti-inflammatory response before chondrogenesis are crucial for effectively addressing tracheal cartilage defects. Herein, we develop a shell-core structured PLGA@ICA-GT@KGN nanofilm using poly(lactic-co-glycolic acid) (PLGA) and icariin (ICA, an anti-inflammatory drug) as the shell layer and gelatin (GT) and kartogenin (KGN, a chondrogenic factor) as the core via coaxial electrospinning technology. The resultant PLGA@ICA-GT@KGN nanofilm exhibited a characteristic fibrous structure and demonstrated high biocompatibility. Notably, it showcased sustained release characteristics, releasing ICA within the initial 0 to 15 days and gradually releasing KGN between 11 and 29 days. Subsequent in vitro analysis revealed the potent anti-inflammatory capabilities of the released ICA from the shell layer, while the KGN released from the core layer effectively induced chondrogenic differentiation of bone marrow stem cells (BMSCs). Following this, the synthesized PLGA@ICA-GT@KGN nanofilms were loaded with BMSCs and stacked layer by layer, adhering to a 'sandwich model' to form a composite sandwich construct. This construct was then utilized to repair circular tracheal defects in a rabbit model. The sequential release of ICA and KGN facilitated by the PLGA@ICA-GT@KGN nanofilm established an anti-inflammatory microenvironment before initiating chondrogenic induction, leading to effective tracheal cartilage restoration. This study underscores the significance of shell-core structured nanofilms in temporally regulating anti-inflammation and chondrogenesis. This approach offers a novel perspective for addressing tracheal cartilage defects, potentially revolutionizing their treatment methodologies.© The Author(s) 2024. Published by Oxford University Press.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 医学
小类 | 2 区 材料科学:生物材料
最新[2023]版:
大类 | 1 区 医学
小类 | 2 区 材料科学:生物材料
JCR分区:
出版当年[2022]版:
Q1 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q1 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China. [2]Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200050, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)