高级检索
当前位置: 首页 > 详情页

Ambient energy harvesters in wearable electronics: fundamentals, methodologies, and applications

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Sch Sensing Sci & Engn, Shanghai 200240, Peoples R China [2]Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Dept Plast & Reconstruct Surg, Sch Med, Shanghai 200011, Peoples R China [3]Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China [4]Shanghai Jiao Tong Univ, Sch Med, Tongren Hosp, Dept Cardiol, 1111 Xianxia Rd, Shanghai 200336, Peoples R China
出处:
ISSN:

关键词: Wearable electronics Biosensors Energy harvesters Self-powered sensors Nanomaterials Health monitoring

摘要:
In recent years, wearable sensor devices with exceptional portability and the ability to continuously monitor physiological signals in real time have played increasingly prominent roles in the fields of disease diagnosis and health management. This transformation has been largely facilitated by materials science and micro/nano-processing technologies. However, as this technology continues to evolve, the demand for multifunctionality and flexibility in wearable devices has become increasingly urgent, thereby highlighting the problem of stable and sustainable miniaturized power supplies. Here, we comprehensively review the current mainstream energy technologies for powering wearable sensors, including batteries, supercapacitors, solar cells, biofuel cells, thermoelectric generators, radio frequency energy harvesters, and kinetic energy harvesters, as well as hybrid power systems that integrate multiple energy conversion modes. In addition, we consider the energy conversion mechanisms, fundamental characteristics, and typical application cases of these energy sources across various fields. In particular, we focus on the crucial roles of different materials, such as nanomaterials and nano-processing techniques, for enhancing the performance of devices. Finally, the challenges that affect power supplies for wearable electronic products and their future developmental trends are discussed in order to provide valuable references and insights for researchers in related fields.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 生物学
小类 | 1 区 生物工程与应用微生物 2 区 纳米科技
最新[2025]版:
大类 | 1 区 生物学
小类 | 1 区 生物工程与应用微生物 2 区 纳米科技
JCR分区:
出版当年[2022]版:
Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q1 NANOSCIENCE & NANOTECHNOLOGY
最新[2023]版:
Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q1 NANOSCIENCE & NANOTECHNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Sch Sensing Sci & Engn, Shanghai 200240, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23549 今日访问量:0 总访问量:1282 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)