As cytoplasmic protein complexes that are pivotal for innate immunity, inflammasomes act primarily through the detection of pathogen- or danger-associated molecular patterns. Nucleotide oligomerisation domain-like receptor family and caspase activation recruitment domain-containing protein 4 (NLRC4) inflammasomes identify and eliminate intracellular pathogens, a process contingent on the ligand-recognition capabilities of neuronal apoptosis inhibitory proteins (NAIPs). Upon detection of specific molecules indicative of intracellular infection, NAIPs discern distinct pathogenic components and subsequently transmit signals to NLRC4, thus initiating their activation and triggering an inflammatory response. However, the mechanisms underlying NLRC4 inflammasome remain unclear. In this study, we elucidated the critical role of ATG16L2 in activating the NLRC4 inflammasome. ATG16L2-deficient macrophages exhibited reduced NLRC4 inflammasome activation, characterised by decreased oligomerisation of apoptosis-associated speck-like protein containing a CARD and attenuated cleavage of Pro-caspase-1, Pro-IL-1 beta and gasdermin D. Co-immunoprecipitation assays revealed an interaction between ATG16L2 and NAIPs. Furthermore, ATG16L2 enhanced the association between NAIPs and NLRC4 by binding to NAIPs. For ATG16L2-knockout mice infected with Salmonella typhimurium, pathogen clearance and survival rates markedly decreased. Collectively, our findings suggest that ATG16L2 is a significant modulator of the innate immune system, influencing the activity of the NLRC4 inflammasome and the host's defensive response to intracellular pathogens. Schematic diagram of ATG16L2-mediated NLRC4 inflammasome activation during Salmonella typhimurium infection. After NAIPs recognize the different components of S. typhimurium, ATG16L2 promotes the binding of NAIPs to NLRC4, enhancing the oligomerisation of ASC and the subsequent caspase-induced cleavage of IL-1 beta and GSDMD. N-terminal perforates the cell membrane, causing pyroptosis and LDH leakage. image
基金:
National Key Research and Development Project [2021YFC2701800]; National Natural Science Foundation of China [31670910, 82070570]; Science and Technology Commission of Shanghai Municipality [21ZR1456200, 19140903002]; Innovative Research Team of High-Level Local Universities in Shanghai [SHSMUZDCX20212000]; Shanghai Frontiers Science Center of Cellular Homeostasis Regulation and Human Diseases