高级检索
当前位置: 首页 > 详情页

Diagnosis of Multiple Fundus Disorders Amidst a Scarcity of Medical Experts via Self-Supervised Machine Learning

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China [2]Capital Med Univ, Beijing Tongren Hosp, Beijing 100760, Peoples R China [3]Univ Melbourne, Dept Surg Ophthalmol, Melbourne, Vic 3052, Australia [4]Univ Cambridge, Darwin Coll, Cambridge CB3 9EU, England [5]Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England [6]Imperial Coll London, UKRI Ctr Doctoral Training AI Hlth, Dept Comp, London SW7 2AZ, England
出处:
ISSN:

关键词: Diseases Retina Hospitals Medical diagnostic imaging Glaucoma Training Pathology Diagnosis of fundus disorders healthcare machine learning self-supervised learning

摘要:
Fundus diseases are prevalent causes of visual impairment and blindness worldwide, particularly in regions with limited access to ophthalmologists for timely diagnosis. Current approaches to fundus disease diagnosis heavily rely on expert-annotated data and AI-assisted image analysis, offering advantages, such as improved accuracy and accessibility. However, the dependency on annotated data poses a significant challenge, especially in regions with limited resources. To address this challenge, we propose a label-free general framework based on self-supervised machine learning. We performed feature distillation on a large number of unlabeled fundus images and employed a linear classifier for the detection of different fundus diseases. In validation experiments on the public and external validation fundus data sets, our model surpassed existing supervised approaches, achieving a remarkable increase in the area under the curve (AUC) of 15.7%, and even outperformed individual human experts. Our approach offers a promising solution to the limitations of current diagnostic methods, enhancing the potential for early and accurate detection of fundus diseases in resource-constrained settings.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 计算机科学
小类 | 1 区 计算机:信息系统 1 区 电信学 2 区 工程:电子与电气
最新[2025]版:
大类 | 2 区 计算机科学
小类 | 1 区 计算机:信息系统 1 区 电信学 2 区 工程:电子与电气
JCR分区:
出版当年[2023]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 TELECOMMUNICATIONS
最新[2023]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 TELECOMMUNICATIONS

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23549 今日访问量:0 总访问量:1282 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)