高级检索
当前位置: 首页 > 详情页

An annotated heterogeneous ultrasound database

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Anhui Univ, Anhui Prov Int Joint Res Ctr Adv Technol Med Imagi, Sch Artificial Intelligence, Hefei 230601, Peoples R China [2]Anhui Jianzhu Univ, Sch Elect & Informat Engn, Hefei 230601, Peoples R China [3]Anhui Univ Sci & Technol, Sch Publ Hlth, Huainan 232001, Peoples R China [4]Wuhan Univ, Wuhan Hosp 3, Tongren Hosp, Dept Radiol, Wuhan 430060, Peoples R China [5]Anhui Univ Sci & Technol, Sch Med, Huainan 232001, Peoples R China [6]Anhui Univ Sci & Technol, Hosp 1, Huainan 232001, Peoples R China
出处:
ISSN:

摘要:
Ultrasound is a primary diagnostic tool commonly used to evaluate internal body structures, including organs, blood vessels, the musculoskeletal system, and fetal development. Due to challenges such as operator dependence, noise, limited field of view, difficulty in imaging through bone and air, and variability across different systems, diagnosing abnormalities in ultrasound images is particularly challenging for less experienced clinicians. The development of artificial intelligence (AI) technology could assist in the diagnosis of ultrasound images. However, many databases are created using a single device type and collection site, limiting the generalizability of machine learning models. Therefore, we have collected a large, publicly accessible ultrasound challenge database that is intended to significantly enhance the performance of AI-assisted ultrasound diagnosis. This database is derived from publicly available data on the Internet and comprises a total of 1,833 distinct ultrasound data. It includes 13 different ultrasound image anomalies, and all data have been anonymized. Our data-sharing program aims to support benchmark testing of ultrasound disease diagnosis in multi-center environments.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
最新[2025]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
JCR分区:
出版当年[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Anhui Univ, Anhui Prov Int Joint Res Ctr Adv Technol Med Imagi, Sch Artificial Intelligence, Hefei 230601, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23549 今日访问量:2 总访问量:1284 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)