高级检索
当前位置: 首页 > 详情页

Predicting Diabetic Retinopathy Using a Machine Learning Approach Informed by Whole-Exome Sequencing Studies

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 统计源期刊 ◇ 卓越:梯队期刊

机构: [1]Capital Med Univ, Beijing Chao Yang Hosp, Dept Ophthalmol, Beijing 100020, Peoples R China [2]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing 100176, Peoples R China [3]Capital Med Univ, Beijing Chao Yang Hosp, Dept Otorhinolaryngol Head & Neck Surg, Beijing 100020, Peoples R China
出处:
ISSN:

关键词: Machine learning Diabetic retinopathy Whole exome sequencing Type 2 diabetes mellitus

摘要:
Objective To establish and validate a novel diabetic retinopathy (DR) risk-prediction model using a whole-exome sequencing (WES)-based machine learning (ML) method. Methods WES was performed to identify potential single nucleotide polymorphism (SNP) or mutation sites in a DR pedigree comprising 10 members. A prediction model was established and validated in a cohort of 420 type 2 diabetic patients based on both genetic and demographic features. The contribution of each feature was assessed using Shapley Additive explanation analysis. The efficacies of the models with and without SNP were compared. Results WES revealed that seven SNPs/mutations (rs116911833 in TRIM7, 1997T>C in LRBA, 1643T>C in PRMT10, rs117858678 in C9orf152, rs201922794 in CLDN25, rs146694895 in SH3GLB2, and rs201407189 in FANCC) were associated with DR. Notably, the model including rs146694895 and rs201407189 achieved better performance in predicting DR (accuracy: 80.2%; sensitivity: 83.3%; specificity: 76.7%; area under the receiver operating characteristic curve [AUC]: 80.0%) than the model without these SNPs (accuracy: 79.4%; sensitivity: 80.3%; specificity: 78.3%; AUC: 79.3%). Conclusion Novel SNP sites associated with DR were identified in the DR pedigree. Inclusion of rs146694895 and rs201407189 significantly enhanced the performance of the ML-based DR prediction model.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 4 区 医学
小类 | 4 区 环境科学 4 区 公共卫生、环境卫生与职业卫生
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 环境科学 4 区 公共卫生、环境卫生与职业卫生
JCR分区:
出版当年[2023]版:
Q2 ENVIRONMENTAL SCIENCES Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
最新[2023]版:
Q2 ENVIRONMENTAL SCIENCES Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Chao Yang Hosp, Dept Ophthalmol, Beijing 100020, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23410 今日访问量:0 总访问量:1276 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)