高级检索
当前位置: 首页 > 详情页

High-Strength Gelatin Hydrogel Scaffold with Drug Loading Remodels the Inflammatory Microenvironment to Enhance Osteoporotic Bone Repair

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 自然指数

机构: [1]Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Sch Med, Shanghai 200080, Peoples R China [2]Shanghai Jiao Tong Univ, Tongren Hosp, Dept Pharm, Sch Med, Shanghai 200336, Peoples R China [3]Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200240, Peoples R China [4]Guangdong Prov Peoples Hosp, Burn Plast Wound Repair Surg Ganzhou Hosp, Ganzhou 341000, Peoples R China [5]Chinese Univ Hong Kong, Sch Life Sci, Fac Sci, Hong Kong 999077, Peoples R China
出处:
ISSN:

关键词: 3D printing bone repair gelatin hydrogels high strength osteoporosis remodel microenvironment

摘要:
Osteoporosis is a widespread condition that induces an inflammatory microenvironment, limiting the effectiveness of conventional therapies and presenting significant challenges for bone defect repair. To address these issues, a high-strength gelatin hydrogel scaffold loaded with roxadustat is developed, specifically designed to remodel the inflammatory microenvironment and enhance osteoporotic bone regeneration. By incorporating minimal methacrylated hyaluronic acid (HAMA) into an o-nitrobenzyl functionalized gelatin (GelNB) matrix, a gelatin hydrogel with a fracture strength of 10 MPa is achieved, providing exceptional structural stability and enabling precise scaffold fabrication through digital light processing (DLP) 3D printing. Validated through cell experiments and animal studies, the hydrogel scaffold supports cell adhesion and migration, offers excellent tissue compatibility, and is fully degradable, meeting the requirements of a therapeutic scaffold. Including roxadustat further enhances the scaffold's functionality by regulating the inflammatory microenvironment via hypoxia-inducible factor-1 alpha (HIF-1 alpha) signaling, significantly improving bone defect repair in osteoporotic models. This drug-loaded scaffold effectively addresses inflammation-induced limitations and enhances the regenerative capacity of the affected area, paving the way for improved therapeutic outcomes in osteoporotic bone repair.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 材料科学
小类 | 1 区 化学:综合 1 区 材料科学:综合 1 区 纳米科技 1 区 物理:应用 1 区 物理:凝聚态物理
最新[2025]版:
大类 | 1 区 材料科学
小类 | 1 区 化学:综合 1 区 材料科学:综合 1 区 纳米科技 1 区 物理:应用 1 区 物理:凝聚态物理
JCR分区:
出版当年[2023]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 CHEMISTRY, PHYSICAL Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY Q1 PHYSICS, APPLIED Q1 PHYSICS, CONDENSED MATTER
最新[2023]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 CHEMISTRY, PHYSICAL Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY Q1 PHYSICS, APPLIED Q1 PHYSICS, CONDENSED MATTER

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Sch Med, Shanghai 200080, Peoples R China [2]Shanghai Jiao Tong Univ, Tongren Hosp, Dept Pharm, Sch Med, Shanghai 200336, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25471 今日访问量:0 总访问量:1498 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)