高级检索
当前位置: 首页 > 详情页

Derivative-Guided Dual-Attention Mechanisms in Patch Transformer for Efficient Automated Recognition of Auditory Brainstem Response Latency

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China [2]Chongqing Univ Posts & Telecommun, Inst Adv Sci, Chongqing 400065, Peoples R China [3]Tianyue Xinchuang Informat Technol Corp, Beijing 100020, Peoples R China [4]Capital Med Univ, Beijing Tongren Hosp, Beijing Inst Otolaryngol, Beijing 100005, Peoples R China [5]Peking Univ, Sch Math Sci, Beijing 100091, Peoples R China [6]Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen 518107, Guangdong, Peoples R China
出处:
ISSN:

关键词: Auditory system Accuracy Data models Brainstem Transformers Semantics Hospitals Training Complexity theory Biological system modeling Auditory brainstem response patch Transformer dual-attention mechanism generalization

摘要:
Accurate recognition of auditory brainstem response (ABR) wave latencies is essential for clinical practice but remains a subjective and time-consuming process. Existing AI approaches face challenges in generalization, complexity, and semantic sparsity due to single sampling-point analysis. This study introduces the Derivative-Guided Patch Dual-Attention Transformer (Patch-DAT), a novel, lightweight, and generalizable deep learning (DL) model for the automated recognition of latencies for waves I, III, and V. Patch-DAT divides the ABR time series into overlapping patches to aggregate semantic information, better capturing local temporal patterns. Meanwhile, leveraging the fact that ABR waves occur at the zero crossing of the first derivative, Patch-DAT incorporates a first derivative-guided dual-attention mechanism to model global dependencies. Trained and validated on large-scale, diverse datasets from two hospitals, Patch-DAT (with a size of 0.36 MB) achieves accuracies of 92.29% and 98.07% at 0.1 ms and 0.2 ms error scales, respectively, on a held-out test set. It also performs well on an independent dataset with accuracies of 88.50% and 95.14%, demonstrating strong generalization across clinical settings. Ablation studies highlight the contributions of the patching strategy and dual-attention mechanisms. Compared to previous state-of-the-art DL models, Patch-DAT shows superior accuracy and reduced complexity, making it a promising solution for object recognition of ABR latencies. Additionally, we systematically investigate how sample size and data heterogeneity affect model generalization, indicating the importance of large, diverse datasets in training robust DL models. Future work will focus on expanding dataset diversity and improving model interpretability to further improve clinical relevance.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 医学
小类 | 1 区 康复医学 2 区 工程:生物医学
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 康复医学 2 区 工程:生物医学
JCR分区:
出版当年[2023]版:
Q1 REHABILITATION Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 REHABILITATION Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China [2]Chongqing Univ Posts & Telecommun, Inst Adv Sci, Chongqing 400065, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25477 今日访问量:0 总访问量:1499 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)