高级检索
当前位置: 首页 > 详情页

Astragaloside IV improves the survival rates of retinal ganglion cells in traumatic optic neuropathy by regulating autophagy mediated by the AMPK-MTOR-ULK signaling pathway

| 认领 | 导出 |

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Ophthalmology, Xiyuan Hospital China Academy of Chinese Medical Sciences, Beijing, China. [2]Beijing University of Chinese Medicine, Beijing, China. [3]Eye Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China. [4]Beijing Tongren Hospital, Beijing, China. [5]Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
出处:

摘要:
Autophagy is involved in the pathological changes of traumatic optic neuropathy (TON), and the regulation of autophagy mediated by the AMPK-mTOR-ULK pathway is a potential therapeutic approach. Astragaloside IV (AS-IV) can regulate autophagy and play a therapeutic role in various diseases. This study aimed to observe the therapeutic effect of astragaloside on TON and the role of AMPK-MTOR-ULK pathway-mediated autophagy in this process.After the TON model was established, varying doses of AS-IV were administered as an intervention. Additionally, compound C (an AMPK inhibitor) or 3-methyladenine (an autophagy inhibitor) was administered intraperitoneally in conjunction with AS-IV. Samples were collected following a 7-day intervention period. Western blot analysis was conducted to measure the protein and phosphorylation levels of AMPK, mTOR, and ULK proteins. Moreover, western blot and quantitative reverse transcription PCR assays were used to quantify LC3 levels in retinal tissue. LC3 immunofluorescence was performed to examine autophagy levels in the ganglion cell layer (GCL), while transmission electron microscopy was employed to observe autophagosomes. Additionally, BRN3A immunofluorescence was used to label retinal ganglion cells (RGCs) in the GCL, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining was used to assess apoptosis within the GCL. Finally, optic nerve conduction function was evaluated using flash visual evoked potentials.After 7 days, the phosphorylation levels of AMPK, mTOR, and ULK proteins in retinal tissue exhibited significant changes following TON. AS-IV treatment enhanced LC3 messenger RNA and protein levels in TON model rats, and the autophagy-promoting effect of AS-IV was reversed by 3-methyladenine. Moreover, AS-IV elevated P-AMPK and P-ULK levels while decreasing P-mTOR levels. AS-IV also improved the survival rate of RGCs and reduced the P2 peak latency of flash visual evoked potentials. These effects were attenuated by the AMPK inhibitor compound C. Additionally, AS-IV increased the levels of AKT1 and P-AKT1 while decreasing P-S6RP levels in the retinal tissue of TON model rats.AS-IV can increase the survival rate of RGCs and improve visual function after TON, which may be related to the improvement of autophagy by regulating the AMPK-MTORC1-ULK pathway.Copyright © 2025 Molecular Vision.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 4 区 医学
小类 | 4 区 生化与分子生物学 4 区 眼科学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 生化与分子生物学 4 区 眼科学
第一作者:
第一作者机构: [1]Department of Ophthalmology, Xiyuan Hospital China Academy of Chinese Medical Sciences, Beijing, China. [2]Beijing University of Chinese Medicine, Beijing, China.
通讯作者:
通讯机构: [1]Department of Ophthalmology, Xiyuan Hospital China Academy of Chinese Medical Sciences, Beijing, China. [2]Beijing University of Chinese Medicine, Beijing, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25463 今日访问量:0 总访问量:1498 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)