机构:[1]Lab for Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou 325027, China[2]School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China[3]Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China研究所眼科研究所首都医科大学附属北京同仁医院首都医科大学附属同仁医院
Cone-rod dystrophy (CORD) is an inherited retinal degenerative disease characterized by progressive loss of cone and rod photoreceptors. Although several genes have been reported to cause autosomal dominant CORD (adCORD), the genetic causes of adCORD have not been fully elucidated. Here, we identified the ATP1A3 gene, encoding the alpha 3 subunit of Na+, K+-ATPase, as a novel gene associated with adCORD. Using whole-exome sequencing (WES), we found a candidate mutation of ATP1A3 that co-segregated with the disease in an analysis of two affected patients and one healthy relative in an adCORD family. According to our RNA-seq data, we demonstrated that the Atp1a3 mRNA level was extremely high in the murine retina. Overexpression of mutant ATP1A3 in vitro led to a reduced oxygen consumption rate (OCR), reflecting the limited mitochondrial reserve capacity. Furthermore, we generated transgenic mice expressing the ATP1A3 cDNA with patient variant and found decreased electroretinogram (ERG) responses. Moreover, the mutant ATP1A3 is highly expressed in photoreceptor inner segment, where mitochondria are enriched. These results suggest that the ATP1A3 mutation is a new genetic cause responsible for adCORD and indicate that ATP1A3 plays an important role in retinal function.
基金:
National Key Research and Development Program of China [2017YFA0105300]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81970838]; Zhejiang Provincial Natural Science Foundation of ChinaNatural Science Foundation of Zhejiang Province [LD18H120001LD]
第一作者机构:[1]Lab for Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou 325027, China
通讯作者:
通讯机构:[1]Lab for Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou 325027, China[2]School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China[3]Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China
推荐引用方式(GB/T 7714):
Zhou Gao-Hui,Ma Yue,Li Meng-Lan,et al.ATP1A3 mutation as a candidate cause of autosomal dominant cone-rod dystrophy[J].HUMAN GENETICS.2020,139(11):1391-1401.doi:10.1007/s00439-020-02182-y.
APA:
Zhou, Gao-Hui,Ma, Yue,Li, Meng-Lan,Zhou, Xin-Yi,Mou, Hao&Jin, Zi-Bing.(2020).ATP1A3 mutation as a candidate cause of autosomal dominant cone-rod dystrophy.HUMAN GENETICS,139,(11)
MLA:
Zhou, Gao-Hui,et al."ATP1A3 mutation as a candidate cause of autosomal dominant cone-rod dystrophy".HUMAN GENETICS 139..11(2020):1391-1401