高级检索
当前位置: 首页 > 详情页

Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA [2]Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA [3]Beijing Tongren Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing Tongren Hospital, Capital Medical University. Beijing, China [4]Shanxi Eye Hospital, Taiyuan, Shanxi, China
出处:
ISSN:

摘要:
Accurate identification and segmentation of choroidal neovascularization (CNV) is essential for the diagnosis and management of exudative age-related macular degeneration (AMD). Projection-resolved optical coherence tomographic angiography (PR-OCTA) enables both cross-sectional and en face visualization of CNV. However, CNV identification and segmentation remains difficult even with PR-OCTA due to the presence of residual artifacts. In this paper, a fully automated CNV diagnosis and segmentation algorithm using convolutional neural networks (CNNs) is described. This study used a clinical dataset, including both scans with and without CNV, and scans of eyes with different pathologies. Furthermore, no scans were excluded due to image quality. In testing, all CNV cases were diagnosed from non-CNV controls with 100% sensitivity and 95% specificity. The mean intersection over union of CNV membrane segmentation was as high as 0.88. By enabling fully automated categorization and segmentation, the proposed algorithm should offer benefits for CNV diagnosis, visualization monitoring. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 医学
小类 | 2 区 光学 2 区 核医学 3 区 生化研究方法
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 生化研究方法 3 区 光学 3 区 核医学
JCR分区:
出版当年[2018]版:
Q1 BIOCHEMICAL RESEARCH METHODS Q1 OPTICS Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 BIOCHEMICAL RESEARCH METHODS Q2 OPTICS Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA [2]Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
通讯作者:
通讯机构: [1]Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA [2]Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23549 今日访问量:0 总访问量:1282 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)