高级检索
当前位置: 首页 > 详情页

Automatic Pathological Lung Segmentation in Low-Dose CT Image Using Eigenspace Sparse Shape Composition

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Soochow Univ, Sch Elect & Informat Engn, State Key Lab Radiat Med & Pro Tect, Suzhou 215006, Peoples R China [2]Soochow Univ, Affiliated Hosp 1, Suzhou 215006, Peoples R China [3]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing 100730, Peoples R China
出处:
ISSN:

关键词: Pathological lung segmentation eigenspace sparse shape composition gradient vector flow discriminative appearance dictionary

摘要:
The segmentation of lungs with severe pathology is a nontrivial problem in the clinical application. Due to complex structures, pathological changes, individual differences, and low image quality, accurate lung segmentation in clinical 3-D computed tomography (CT) images is still a challenging task. To overcome these problems, a novel dictionary-based approach is introduced to automatically segment pathological lungs in 3-D low-dose CT images. Sparse shape composition is integrated with the eigenvector space shape prior model, called eigenspace sparse shape composition, to reduce local shape reconstruction error caused by the weak and misleading appearance prior information. To initialize the shape model, a landmark recognition method based on discriminative appearance dictionary is introduced to handle lesions and local details. Furthermore, a new vertex search strategy based on the gradient vector flowfield is also proposed to drive the shape deformation to the target boundary. The proposed algorithm is tested on 78 3-D low-dose CT images with lung tumors. Compared to the state-of-the-art methods, the proposed approach can robustly and accurately detect pathological lung surface.

基金:

基金编号: 2014CB748600 61622114 61771326 81371629 61401293 61401294 81401451 81401472 SJCX17_0650

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 2 区 医学
小类 | 1 区 计算机:跨学科应用 2 区 工程:生物医学 2 区 工程:电子与电气 2 区 成像科学与照相技术 2 区 核医学
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 核医学
JCR分区:
出版当年[2017]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]Soochow Univ, Sch Elect & Informat Engn, State Key Lab Radiat Med & Pro Tect, Suzhou 215006, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)