高级检索
当前位置: 首页 > 详情页

Plasma metabolomic profiling of proliferative diabetic retinopathy

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100073, China. [2]Beijing Key Laboratory of Diabetes Research and Care, Beijing, China. [3]Beijing Diabetes Institute, Beijing, China.
出处:
ISSN:

关键词: Type 2 diabetes Proliferative diabetic retinopathy Metabolomics Metabolic profiling LC-MS

摘要:
BackgroundProliferative diabetic retinopathy (PDR), a sight-threatening retinopathy, is the leading cause of irreversible blindness in adults. Despite strict control of systemic risk factors, a fraction of patients with diabetes develop PDR, suggesting the existence of other potential pathogenic factors underlying PDR. This study aimed to investigate the plasma metabotype of patients with PDR and to identify novel metabolite markers for PDR. Biomarkers identified from this study will provide scientific insight and new strategies for the early diagnosis and intervention of diabetic retinopathy.MethodsA total of 1024 patients with type 2 diabetes were screened. To match clinical parameters between case and control subjects, patients with PDR (PDR, n=21) or those with a duration of diabetes of 10years but without diabetic retinopathy (NDR, n=21) were assigned to the present case-control study. Distinct metabolite profiles of serum were examined using liquid chromatography-mass spectrometry (LC-MS).ResultsThe distinct metabolites between PDR and NDR groups were significantly enriched in 9 KEGG pathways (P<0.05, impact >0.1), namely, alanine, aspartate and glutamate metabolism, caffeine metabolism, beta-alanine metabolism, purine metabolism, cysteine and methionine metabolism, sulfur metabolism, sphingosine metabolism, and arginine and proline metabolism. A total of 63 altered metabolites played important roles in these pathways. Finally, 4 metabolites were selected as candidate biomarkers for PDR, namely, fumaric acid, uridine, acetic acid, and cytidine. The area under the curve for these biomarkers were 0.96, 0.95, 1.0, and 0.95, respectively.ConclusionsThis study suggested that impairment in the metabolism of pyrimidines, arginine and proline were identified as metabolic dysregulation associated with PDR. And fumaric acid, uridine, acetic acid, and cytidine might be potential biomarkers for PDR. Fumaric acid was firstly reported as a novel metabolite marker with no prior reports of association with diabetes or diabetic retinopathy, which might provide insights into potential new pathogenic pathways for diabetic retinopathy.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 3 区 医学
小类 | 3 区 营养学
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 营养学
JCR分区:
出版当年[2017]版:
Q2 NUTRITION & DIETETICS
最新[2023]版:
Q2 NUTRITION & DIETETICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100073, China.
共同第一作者:
通讯作者:
通讯机构: [1]Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100073, China. [2]Beijing Key Laboratory of Diabetes Research and Care, Beijing, China. [3]Beijing Diabetes Institute, Beijing, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21166 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)