机构:[1]Univ Hong Kong, State Key Lab Pharmaceut Biotechnol, Hong Kong, Hong Kong, Peoples R China[2]Univ Hong Kong, Dept Med, Hong Kong, Hong Kong, Peoples R China[3]Univ Hong Kong, Dept Pharmacol & Pharm, Hong Kong, Hong Kong, Peoples R China[4]Capital Med Univ, Beijing Key Lab Diabet Res & Care, Dept Endocrinol, Beijing Tongren Hosp, Beijing, Peoples R China临床科室内分泌科首都医科大学附属北京同仁医院首都医科大学附属同仁医院[5]Hong Kong Polytech Univ, Dept Hlth Technol & Informat, Hong Kong, Hong Kong, Peoples R China[6]Univ Southern Denmark, Dept Biochem & Mol Biol, Odense, Denmark
Profound loss and senescence of adipose tissues are hallmarks of advanced age, but the underlying cause and their metabolic consequences remain obscure. Proper function of the murine double minute 2 (MDM2)-p53 axis is known to prevent tumorigenesis and several metabolic diseases, yet its role in regulation of adipose tissue aging is still poorly understood. In this study, we show that the proximal p53 inhibitor MDM2 is markedly downregulated in subcutaneous white and brown adipose tissues of mice during aging. Genetic disruption of MDM2 in adipocytes triggers canonical p53-mediated apoptotic and senescent programs, leading to age-dependent lipodystrophy and its associated metabolic disorders, including type 2 diabetes, nonalcoholic fatty liver disease, hyperlipidemia, and energy imbalance. Surprisingly, this lipodystrophy mouse model also displays premature loss of physiological integrity, including impaired exercise capacity, multiple organ senescence, and shorter life span. Transplantation of subcutaneous fat rejuvenates the metabolic health of this aging-like lipodystrophy mouse model. Furthermore, senescence-associated secretory factors from MDM2-null adipocytes impede adipocyte progenitor differentiation via a non-cell-autonomous manner. Our findings suggest that tight regulation of the MDM2-p53 axis in adipocytes is required for adipose tissue dynamics and metabolic health during the aging process.
基金:
French National Research Agency,
Research Grant Council of Hong Kong Joint Scheme (A-HKU705/13), Research
Grant Council of Hong Kong Collaborative Fund (C7055-14G), General Research
Fund (17100717), and Health Medical Research Fund (04151756).
第一作者机构:[1]Univ Hong Kong, State Key Lab Pharmaceut Biotechnol, Hong Kong, Hong Kong, Peoples R China[2]Univ Hong Kong, Dept Med, Hong Kong, Hong Kong, Peoples R China
通讯作者:
通讯机构:[1]Univ Hong Kong, State Key Lab Pharmaceut Biotechnol, Hong Kong, Hong Kong, Peoples R China[2]Univ Hong Kong, Dept Med, Hong Kong, Hong Kong, Peoples R China[3]Univ Hong Kong, Dept Pharmacol & Pharm, Hong Kong, Hong Kong, Peoples R China
推荐引用方式(GB/T 7714):
Liu Zhuohao,Jin Leigang,Yang Jin-Kui,et al.The Dysfunctional MDM2-p53 Axis in Adipocytes Contributes to Aging-Related Metabolic Complications by Induction of Lipodystrophy[J].DIABETES.2018,67(11):2397-2409.doi:10.2337/db18-0684.
APA:
Liu, Zhuohao,Jin, Leigang,Yang, Jin-Kui,Wang, Baile,Wu, Kelvin K. L....&Cheng, Kenneth K. Y..(2018).The Dysfunctional MDM2-p53 Axis in Adipocytes Contributes to Aging-Related Metabolic Complications by Induction of Lipodystrophy.DIABETES,67,(11)
MLA:
Liu, Zhuohao,et al."The Dysfunctional MDM2-p53 Axis in Adipocytes Contributes to Aging-Related Metabolic Complications by Induction of Lipodystrophy".DIABETES 67..11(2018):2397-2409