高级检索
当前位置: 首页 > 详情页

Automatic Choroidal Layer Segmentation Using Markov Random Field and Level Set Method

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Department of Computer Science, Brunel University, Uxbridge UB8 3PH, U.K. [2]Beijing Institute of Ophthalmology and Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital University of Medical Science, Beijing 100054, China
出处:
ISSN:

关键词: Choroid layer segmentation level set method markov random field and macular 3D OCT images

摘要:
The choroid is an important vascular layer that supplies oxygen and nourishment to the retina. The changes in thickness of the choroid have been hypothesized to relate to a number of retinal diseases in the pathophysiology. In this paper, an automatic method is proposed for segmenting the choroidal layer from macular images by using the level set framework. The three-dimensional nonlinear anisotropic diffusion filter is used to remove all the optical coherence tomography (OCT) imaging artifacts including the speckle noise and to enhance the contrast. The distance regularization and edge constraint terms are embedded into the level set method to avoid the irregular and small regions and keep information about the boundary between the choroid and sclera. Besides, the Markov random field method models the region term into the framework by correlating the single-pixel likelihood function with neighborhood information to compensate for the inhomogeneous texture and avoid the leakage due to the shadows cast by the blood vessels during imaging process. The effectiveness of this method is demonstrated by comparing against other segmentation methods on a dataset with manually labeled ground truth. The results show that our method can successfully and accurately estimate the posterior choroidal boundary.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 3 区 工程技术
小类 | 2 区 计算机:信息系统 3 区 计算机:跨学科应用 3 区 数学与计算生物学 3 区 医学:信息
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 医学:信息
JCR分区:
出版当年[2015]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q2 MEDICAL INFORMATICS
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者机构: [1]Department of Computer Science, Brunel University, Uxbridge UB8 3PH, U.K.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)