高级检索
当前位置: 首页 > 详情页

Adaptive Hierarchical Control for the Muscle Strength Training of Stroke Survivors in Robot-aided Upper-limb Rehabilitation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing, Jiangsu, Peoples R China [2]Southeast Univ, Sch Instrument Sci & Engn, Nanjing, Jiangsu, Peoples R China [3]Nanjing Tongren Hosp, Dept Rehabil Med, Nanjing, Jiangsu, Peoples R China
出处:
DOI: 10.5772/51035
ISSN:

关键词: rehabilitation robot muscle strength training hierarchical control biomechanical state estimation

摘要:
Muscle strength training for stroke patients is of vital importance for helping survivors to progressively restore muscle strength and improve the performance of their activities in daily living (ADL). An adaptive hierarchical therapy control framework which integrates the patient's real biomechanical state estimation with task-performance quantitative evaluation is proposed. Firstly, a high-level progressive resistive supervisory controller is designed to determine the resistive force base for each training session based on the patient's online task-performance evaluation. Then, a low-level adaptive resistive force triggered controller is presented to further regulate the interactive resistive force corresponding to the patient's real-time biomechanical state - characterized by the patient's bio-damping and bio-stiffness in the course of one training session, so that the patient is challenged in a moderate but engaging and motivating way. Finally, a therapeutic robot system using a Barrett WAM (TM) compliant manipulator is set up. We recruited eighteen inpatient and outpatient stroke participants who were randomly allocated in experimental (robot-aided) and control (conventional physical therapy) groups and enrolled for sixteen weeks of progressive resistance training. The preliminary results show that the proposed therapy control strategies can enhance the recovery of strength and motor control ability.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2011]版:
大类 | 4 区 工程技术
小类 | 4 区 机器人学
最新[2023]版:
大类 | 4 区 计算机科学
小类 | 4 区 机器人学
JCR分区:
出版当年[2010]版:
Q4 ROBOTICS
最新[2023]版:
Q3 ROBOTICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2010版] 出版当年五年平均 出版前一年[2009版] 出版后一年[2011版]

第一作者:
第一作者机构: [1]Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing, Jiangsu, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21166 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)