高级检索
当前位置: 首页 > 详情页

Qualitative analysis of models with different treatment protocols to prevent antibiotic resistance

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China [2]Department of Clinical Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing 100041, China [3]Department of Mathematics, University of Miami, P.O. Box 249085, Coral Gables, FL 33124-4250, USA
出处:
ISSN:

关键词: Antibiotic resistance Mathematical model Basic reproduction number Equilibrium Stability

摘要:
This paper is concerned with the qualitative analysis of two models [S. Bonhoeffer, M. Lipsitch, B.R. Levin, Evaluating treatment protocols to prevent antibiotic resistance, Proc. Natl. Acad. Sci. USA 94 (1997) 12106] for different treatment protocols to prevent antibiotic resistance. Detailed qualitative analysis about the local or global stability of the equilibria of both models is carried out in term of the basic reproduction number R-0. For the model with a single antibiotic therapy, we show that if R-0 < 1, then the disease-free equilibrium is globally asymptotically stable: if R-0 > 1, then the disease-endemic equilibrium is globally asymptotically stable. For the model with multiple antibiotic therapies, stabilities of various equilibria are analyzed and combining treatment is shown better than cycling treatment. Numerical simulations are performed to show that the dynamical properties depend intimately upon the parameters. (C) 2010 Elsevier Inc. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2009]版:
大类 | 4 区 生物
小类 | 4 区 生物学 4 区 数学与计算生物学
最新[2023]版:
大类 | 4 区 数学
小类 | 3 区 生物学 3 区 数学与计算生物学
JCR分区:
出版当年[2008]版:
Q3 BIOLOGY Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q2 BIOLOGY Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2008版] 出版当年五年平均 出版前一年[2007版] 出版后一年[2009版]

第一作者:
第一作者机构: [1]School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China
通讯作者:
通讯机构: [3]Department of Mathematics, University of Miami, P.O. Box 249085, Coral Gables, FL 33124-4250, USA [*1]Univ Miami, Dept Math, POB 249085, Coral Gables, FL 33124 USA
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)