高级检索
当前位置: 首页 > 详情页

Spatial probabilistic distribution map-based two-channel 3D U-net for visual pathway segmentation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Beijing Inst Technol, Beijing Engn Res Ctr Mixed Real & Adv Display, Sch Opt & Photon, Beijing 100081, Peoples R China [2]Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China [3]Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, Beijing 100730, Peoples R China
出处:
ISSN:

摘要:
Precise segmentation of the visual pathway is significant in preoperative planning to prevent the surgeon from touching it during the operation. Manual segmentation is time consuming and tedious. Thus, automatic segmentation strategies are necessary to assist clinical evaluation. However, the low contrast and blurred boundary between the target and the background in the image make automatic segmentation a challenging problem. This paper proposed a spatial probabilistic distribution map (SPDM)-based two-channel 3D U-Net to make shape and position prior information available for deep learning. First, an atlas calculated by group-wise registration was used to register each training volume image for deformation field determination. Second, the deformation field was used to transform the label of the corresponding training image to the template space, and then all the warped labels were summed up to create an SPDM. Third, the region of interest of the image and SPDM were sent to the network to predict the final segmentation. The proposed method was evaluated and compared against a conventional 3D U-Net on two datasets. Experimental results indicated that our method overcame the problem of low contrast and achieved better performance than previous methods. (C) 2020 Elsevier B.V. All rights reserved.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 3 区 工程技术
小类 | 3 区 计算机:人工智能
最新[2025]版:
大类 | 3 区 计算机科学
小类 | 3 区 计算机:人工智能
JCR分区:
出版当年[2018]版:
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
最新[2023]版:
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Beijing Inst Technol, Beijing Engn Res Ctr Mixed Real & Adv Display, Sch Opt & Photon, Beijing 100081, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23624 今日访问量:3 总访问量:1285 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)