高级检索
当前位置: 首页 > 详情页

A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore [2]Chinese Univ Hong Kong, Dept Ophthalmol & Visual Sci, Hong Kong, Peoples R China [3]Natl Univ Singapore, Sch Comp, Singapore, Singapore [4]Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Programme, Singapore, Singapore [5]Natl Univ Singapore Hosp, Emergency Med Dept, Singapore, Singapore [6]Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Surg, Singapore, Singapore [7]Westmead Inst Med Res, Ctr Vis Res, Westmead, NSW, Australia [8]Univ Otago, Dept Psychol, Dunedin Multidisciplinary Hlth & Dev Res Unit, Dunedin, New Zealand [9]Duke Univ, Dept Psychol & Neurosci, Durham, NC USA [10]Ruprecht Karls Univ Heidelberg, Med Fac Mannheim, Dept Ophthalmol, Heidelberg, Germany [11]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing Ophthalmol & Visual Sci Key Lab,Beijing I, Beijing, Peoples R China [12]Sungkyunkwan Univ, Sch Med, Kangbuk Samsung Hosp, Dept Ophthalmol, Seoul, South Korea [13]Univ Melbourne, Austin Hosp, Austin Hlth, Dept Cardiol, Heidelberg, Vic, Australia [14]Univ Melbourne, Dept Med, Heidelberg, Vic, Australia [15]KK Womens & Childrens Hosp, Div Obstet & Gynaecol, Singapore, Singapore
出处:
ISSN:

摘要:
Deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs perform comparably to or better than expert graders in associations of measurements of retinal-vessel calibre with cardiovascular risk factors. Retinal blood vessels provide information on the risk of cardiovascular disease (CVD). Here, we report the development and validation of deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs, using diverse multiethnic multicountry datasets that comprise more than 70,000 images. Retinal-vessel calibre measured by the models and by expert human graders showed high agreement, with overall intraclass correlation coefficients of between 0.82 and 0.95. The models performed comparably to or better than expert graders in associations between measurements of retinal-vessel calibre and CVD risk factors, including blood pressure, body-mass index, total cholesterol and glycated-haemoglobin levels. In retrospectively measured prospective datasets from a population-based study, baseline measurements performed by the deep-learning system were associated with incident CVD. Our findings motivate the development of clinically applicable explainable end-to-end deep-learning systems for the prediction of CVD on the basis of the features of retinal vessels in retinal photographs.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 医学
小类 | 1 区 工程:生物医学
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 工程:生物医学
JCR分区:
出版当年[2019]版:
Q1 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore [2]Chinese Univ Hong Kong, Dept Ophthalmol & Visual Sci, Hong Kong, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore [4]Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Programme, Singapore, Singapore
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23459 今日访问量:6 总访问量:1282 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)