高级检索
当前位置: 首页 > 详情页

Nifuroxazide improves insulin secretion and attenuates high glucose-induced inflammation and apoptosis in INS-1 cells

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Tongren Hosp, Beijing Diabet Inst, Dept Endocrinol,Beijing Key Lab Diabet Res & Care, Beijing 100730, Peoples R China
出处:
ISSN:

关键词: Nifuroxazide Insulin secretion Inflammation Oxidative stress Apoptosis

摘要:
Inflammation and oxidative stress are important factors that cause islet 13-cell dysfunction. STAT3 is not only a major factor in cell proliferation and differentiation, but also plays an important role in mediating inflammation. As a potent inhibitor of STAT3, the effect of Nifuroxazide (Nifu) on pancreatic islet cells in a high glucose environment has not been reported. In the present study, we used high concentration glucose-induced INS-1 cells to examine the effects of Nifu on high glucose-induced cell function by glucose-stimulated insulin secretion (GSIS). The effects of Nifu on high glucose-induced oxidative stress were recorded by oxidative factors and antioxidant factors. Simultaneously, the effect of Nifu on the inflammatory response, apoptosis, and STAT3/ SOCS3 signal pathway were validated by quantitative real-time PCR (qRT-PCR) and Western blot. Our study indicated that Nifu significantly improved cell vitality and insulin secretion of INS-1 cells induced by high glucose. We found Nifu significantly inhibited pro-oxidative factors (ROS, MDA) and promoted anti-oxidative factors (SOD, GSH-PX, CAT). Meanwhile, qRT-PCR and Western blot results showed that inflammatory and apoptosis factors were remarkably inhibited by Nifu. Further research indicated that Nifu clearly suppressed the activation of the STAT3/SOCS3 signaling pathway. In conclusion, Nifu can significantly improve the insulin secretion function, protect oxidative stress injury, and reduce inflammatory response and apoptosis in high glucose-induced INS-1 cells. Therefore, Nifu has a new positive effect on maintaining the normal function of pancreatic islet cells in a high glucose environment and provides new drug candidates for the treatment and prevention of diabetes.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 3 区 药学
最新[2023]版:
大类 | 3 区 医学
小类 | 2 区 药学
JCR分区:
出版当年[2019]版:
Q2 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tongren Hosp, Beijing Diabet Inst, Dept Endocrinol,Beijing Key Lab Diabet Res & Care, Beijing 100730, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)