高级检索
当前位置: 首页 > 详情页

Investigation of MRI-based radiomics model in differentiation between sinonasal primary lymphomas and squamous cell carcinomas

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, Beijing 100730, Peoples R China [2]Huiying Med Technol Co Ltd, Beijing, Peoples R China
出处:
ISSN:

关键词: Sinonasal Lymphoma Squamous cell carcinoma Magnetic resonance imaging Radiomics

摘要:
Purpose To develop and validate an MRI-based radiomics model in differentiation between sinonasal primary lymphomas and squamous cell carcinomas (SCCs). Materials and methods One-hundred-and-fifty-four patients were enrolled (74 individuals with SCCs and 80 with lymphomas). After feature analysis and feature selection with variance threshold and least absolute shrinkage and selection operator (LASSO) methods, an MRI-based radiomics model with the support vector machine (SVM) classifier was constructed in differentiation between lymphomas and SCCs. Areas under the receiver operating characteristic curves (AUCs) of the MRI-based radiomics model were compared with those of radiologists using Delong test. Results Five features (T1 original shape Compactness2, T1 wavelet-HHH first-order Total Energy, T2 wavelet-HLH GLCM Informational Measure of Correlation1, T1 wavelet-LHL GLCM Inverse Variance and T1 square GLRLM Long Run Low Gray Level Emphasis) were finally selected in the radiomics model. The AUC values in differentiation between lymphomas and SCCs were 0.94 for the training dataset and 0.85 for the validation dataset, respectively. For all the patient datasets, the AUC values of radiomics model, readers 1, 2 and 3 were 0.92, 0.76, 0.77 and 0.80, respectively. For the validation datasets, no significant difference was found between the AUCs of the radiomics model and those of the three radiologist (P = 0.459, 0.469, 0.738 for radiologist 1, 2 and 3, respectively). Conclusion An MRI-based radiomics model can help to differentiate sinonasal lymphomas from SCCs with high accuracy.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 4 区 核医学
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 核医学
JCR分区:
出版当年[2019]版:
Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, Beijing 100730, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21166 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)