高级检索
当前位置: 首页 > 详情页

Analysing wideband absorbance immittance in normal and ears with otitis media with effusion using machine learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Cardiff Metropolitan Univ, Sch Sport & Hlth Sci, Ctr Speech & Language Therapy & Hearing Sci, Cardiff CF5 2YB, Wales [2]Guangzhou Women & Childrens Med Ctr, Dept Otolaryngol, Guangzhou 510623, Guangdong, Peoples R China [3]Beijing Tongren Hosp, Dept Otolaryngol Head & Neck Surg, Beijing 100730, Peoples R China [4]Beijing Engn Res Ctr Hearing Technol, Key Lab Otolaryngol Head & Neck Surg, Minist Educ, Beijing 100730, Peoples R China [5]Xuzhou Med Univ, Dept Hearing & Speech Sci, Xuzhou 221000, Jiangsu, Peoples R China [6]Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Dept Otolaryngol, Guangzhou 510120, Guangdong, Peoples R China [7]Sun Yat Sen Univ, Inst Hearing & Speech Language Sci, Guangzhou 510120, Guangdong, Peoples R China
出处:
ISSN:

摘要:
Wideband Absorbance Immittance (WAI) has been available for more than a decade, however its clinical use still faces the challenges of limited understanding and poor interpretation of WAI results. This study aimed to develop Machine Learning (ML) tools to identify the WAI absorbance characteristics across different frequency-pressure regions in the normal middle ear and ears with otitis media with effusion (OME) to enable diagnosis of middle ear conditions automatically. Data analysis included pre-processing of the WAI data, statistical analysis and classification model development, and key regions extraction from the 2D frequency-pressure WAI images. The experimental results show that ML tools appear to hold great potential for the automated diagnosis of middle ear diseases from WAI data. The identified key regions in the WAI provide guidance to practitioners to better understand and interpret WAI data and offer the prospect of quick and accurate diagnostic decisions.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
最新[2025]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2019]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Cardiff Metropolitan Univ, Sch Sport & Hlth Sci, Ctr Speech & Language Therapy & Hearing Sci, Cardiff CF5 2YB, Wales
共同第一作者:
通讯作者:
通讯机构: [6]Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Dept Otolaryngol, Guangzhou 510120, Guangdong, Peoples R China [7]Sun Yat Sen Univ, Inst Hearing & Speech Language Sci, Guangzhou 510120, Guangdong, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23418 今日访问量:3 总访问量:1279 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)