高级检索
当前位置: 首页 > 详情页

Effective methods of diabetic retinopathy detection based on deep convolutional neural networks.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China [2]Peng Cheng Laboratory, Shenzhen 518000, China [3]Hangzhou Innovation Research Institute, Beihang University, Hangzhou 100191, China [4]Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC), Beihang University, Beijing 100191, China [5]School of Informatics, Xiamen University, Xiamen 361005, China [6]Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
出处:
ISSN:

关键词: Diabetic retinopathy Fundus image analysis Deep learning Convolutional neural networks

摘要:
Diabetic retinopathy (DR) has become the leading cause of blindness worldwide. In clinical practice, the detection of DR often takes a lot of time and effort for ophthalmologist. It is necessary to develop an automatic assistant diagnosis method based on medical image analysis techniques.Firstly, we design a feature enhanced attention module to capture focus lesions and regions. Secondly, we propose a stage sampling strategy to solve the problem of data imbalance on datasets and avoid the CNN ignoring the focus features of samples that account for small parts. Finally, we treat DR detection as a regression task to keep the gradual change characteristics of lesions and output the final classification results through the optimization method on the validation set.Extensive experiments are conducted on open-source datasets. Our methods achieve 0.851 quadratic weighted kappa which outperforms first place in the Kaggle DR detection competition based on the EyePACS dataset and get the accuracy of 0.914 in the referable/non-referable task and 0.913 in the normal/abnormal task based on the Messidor dataset.In this paper, we propose three novel automatic DR detection methods based on deep convolutional neural networks. The results illustrate that our methods can obtain comparable performance compared with previous methods and generate visualization pictures with potential lesions for doctors and patients.© 2021. CARS.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 3 区 外科 4 区 工程:生物医学 4 区 核医学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 工程:生物医学 4 区 核医学 4 区 外科
JCR分区:
出版当年[2019]版:
Q2 SURGERY Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q3 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q2 SURGERY Q3 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China [3]Hangzhou Innovation Research Institute, Beihang University, Hangzhou 100191, China [4]Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC), Beihang University, Beijing 100191, China
通讯作者:
通讯机构: [1]State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China [2]Peng Cheng Laboratory, Shenzhen 518000, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23546 今日访问量:6 总访问量:1282 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)