高级检索
当前位置: 首页 > 详情页

3D augmented fundus images for identifying glaucoma via transferred convolutional neural networks

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Shanghai Univ Med & Hlth Sci, Dept Radiol, Affliated Zhoupu Hosp, Shanghai 201318, Peoples R China [2]Shanghai Univ Med & Hlth Sci, Coll Med Imaging, Shanghai 201318, Peoples R China [3]Cent South Univ, Xiangya Hosp 2, Dept Ophthalmol, Changsha 410011, Hunan, Peoples R China [4]Hunan Clin Res Ctr Ophthalm Dis, Changsha 410011, Hunan, Peoples R China [5]Cent South Univ, Clin Immunol Ctr, Changsha 410011, Hunan, Peoples R China
出处:
ISSN:

摘要:
Purpose Glaucoma is a chronic and irreversible retinopathy threatening the vision of millions of patients around the world. Its early diagnosis and treatment can help to prolong the period of sight deterioration from no visual impairment to blindness, whereas the screening and diagnosis of glaucoma in clinical remains challenging because some key assessment criteria like cup-to-disc ratio is limited by subjective analysis and intra- and inter-observer variability. This paper exploits the potential of new augmented image data of the optic nerve head (ONH) combining with the latest deep learning networks to achieve better diagnosis of glaucoma. Methods This paper explores the potential value of additional three-dimensional topographic map of the optic nerve head proceeded by the latest deep learning approaches, i.e. convolutional neural networks to improve the diagnosis efficiency. Specifically, 3D topography map of the ONH and RGB fundus image has been used to train the transferred AlexNet and VGG-16 networks. The diagnostic performance is compared to those achieved by using the 2D fundus images only. Results The 3D topographic map of ONH reconstructed from the shape from shading method provides better visualization of the structure of optic cup and disc. These new enhanced dataset was employed to train the proposed deep learning networks and finally achieve diagnostic accuracy of 94.3% which is superior to the networks trained via 2D conventional images. Conclusion Employing the deep learning neural networks with augmented 3D images can increase the accuracy of automatic separating glaucoma and non-glaucoma fundus images. It may be used as an objective tool in developing computer assisted diagnosis systems for assessment of glaucoma.

基金:

基金编号: SPCI-17-18-001

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 4 区 眼科学
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 眼科学
JCR分区:
出版当年[2019]版:
Q4 OPHTHALMOLOGY
最新[2023]版:
Q3 OPHTHALMOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Shanghai Univ Med & Hlth Sci, Dept Radiol, Affliated Zhoupu Hosp, Shanghai 201318, Peoples R China [2]Shanghai Univ Med & Hlth Sci, Coll Med Imaging, Shanghai 201318, Peoples R China
通讯作者:
通讯机构: [*1]Shanghai Univ Med & Hlth Sci, Coll Med Imaging, Shanghai 201318, Peoples R China [2]Shanghai Univ Med & Hlth Sci, Coll Med Imaging, Shanghai 201318, Peoples R China [*2]Cent South Univ, Xiangya Hosp 2, Dept Ophthalmol, Changsha 410011, Hunan, Peoples R China [3]Cent South Univ, Xiangya Hosp 2, Dept Ophthalmol, Changsha 410011, Hunan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21437 今日访问量:5 总访问量:1233 更新日期:2025-02-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)